

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

PERSONAL INFORMATION SEARCH
ON MOBILE DEVICES

by

Mehmet Akbas

September 2007

 Thesis Advisor: Gurminder Singh
 Co-Advisor: Thomas Otani

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Personal Information Search
on Mobile Devices
6. AUTHOR(S) Mehmet AKBAS

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is
unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Today’s mobile devices, especially mobile phones, are comparable in computing

capability and storage to the desktop computers of a few years ago. The volume and
diversity of the information kept on mobile devices has continually increased and users
have taken advantage of this. Since information is being stored on multiple devices,
searching for and retrieving the desired information has become an important function.

This thesis focuses on search with regard to Personal Information Management
(PIM) on mobile devices. A search system which involves different types of mobile
devices is also introduced.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS Search, PIM, mobile device, information management

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

PERSONAL INFORMATION SEARCH
ON MOBILE DEVICES

Mehmet Akbas

Major, Turkish Army
B.S., Turkish Military Academy, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Mehmet Akbas

Approved by: Gurminder Singh
Thesis Advisor

Thomas Otani
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Today’s mobile devices, especially mobile phones, are

comparable in computing capability and storage to the

desktop computers of a few years ago. The volume and

diversity of the information kept on mobile devices has

continually increased and users have taken advantage of

this. Since information is being stored on multiple devices,

searching for and retrieving the desired information has

become an important function.

This thesis focuses on search with regard to Personal

Information Management (PIM) on mobile devices. A search

system which involves different types of mobile devices is

also introduced.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PROBLEM SPACE1
B. OBJECTIVE ..2
C. RESEARCH METHODOLOGY2
D. THESIS ORGANIZATION3

II. OVERVIEW ..5
A. OVERVIEW ...5
B. PIM FOR MOBILITY6

1. Introduction to Mobile Devices6
2. Management7

a. Search7
b. Power Issues8

3. Content Capture & Production9
a. Tagging9
b. Production11
c. Media type11

4. Reception11
5. Distribution & Transfer12

C. SEARCHING FOR PERSONAL INFORMATION13
1. Overview13
2. Background14
3. Challenges for Mobile Search15
4. Related Work16

D. SUMMARY ..19
III. MOBILE DEVICES AND INTERCONNECTIVITY21

A. OVERVIEW ..21
B. MOBILE DEVICE CATEGORIES21

1. Mobile Phones21
2. PDA ..23
3. Smartphones24
4. PC/Notebook25
5. Handheld Computers27

C. CONNECTION SCHEMES28
1. Personal Area Networking28

a. Bluetooth28
b. Infrared29

2. Mobile Data Services31
3. WLANs ..33

IV. SYSTEM ARCHITECTURE AND IMPLEMENTATION35
A. OVERVIEW ..35
B. SEARCH ..35

 viii

1. Aim ..35
2. Central Idea36
3. High-Level System Architecture38
4. Design, Architecture and Implementation40

C. OBSERVATIONS42
D. SUMMARY ...43

V. CONCLUSIONS AND RECOMMENDATIONS45
A. CONCLUSIONS45
B. LESSONS LEARNED46
C. FUTURE RESEARCH46

APPENDIX. DEMO APPLICATIONS49
A. MOBILE PHONE49

1. OVERVIEW49
2. PROGRAM CODE50

B. PC ..71
1. OVERVIEW71
2. LIBRARIES AND APPLICATIONS71
3. PROGRAM CODE71

LIST OF REFERENCES ..83
INITIAL DISTRIBUTION LIST89

 ix

LIST OF FIGURES

Figure 1. Taxonomy of PIM for Mobility.....................6
Figure 2. General Architecture............................36
Figure 3. High Level Architectural Diagram................38
Figure 4. Starting a search on the mobile phone...........39
Figure 5. Component-Level Diagram.........................41

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

 I would like to dedicate this thesis to my two sons,

Kagan and Cagan. They have always been ready to play when it

was time to have a break.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM SPACE

A large number of people today use multiple devices to

accomplish their jobs. It is quite common for an individual

to be using a smart phone, a laptop computer, a USB storage

device and a desktop computer, and in many instances more

than one of each type of device is used. In recent years,

the power and capacity of these devices has become quite

significant and hence people are beginning to store and use

their information across all these devices. For example,

mobile phones which previously only stored contact lists are

now used for storing pictures, music, video clips,

calendars, task lists and notes.

With their personal information scattered among so many

different devices, it has become difficult for mobile users

to manage, find and use this information in an efficient

way. Some contacts are saved on the PC in an address book,

some email addresses are only in the online email account’s

contact list and some phone numbers are stored only in the

mobile phone’s memory. Personal Information Management (PIM)

addresses these problems. Teevan et al. (2006) defines PIM

as [1] “Personal information management (PIM) is intended to

support the activities we, as individuals, perform to order

our daily lives through the acquisition, organization,

maintenance, retrieval, and sharing of information.”

Today’s mobile devices, especially mobile phones, are

comparable in computing capability and storage to the

desktop computers of a few years ago. The volume and

 2

diversity of the information kept on mobile devices has

continually increased and users have taken advantage of

this. Consequently, searching for and retrieving the desired

information on mobile devices has been become an important

function. Increasing number of users and businesses find

themselves more heavily dependent on mobile devices than

ever before. As a result, managing information which is

scattered across multiple devices is becoming a big problem.

In the absence of proper tools, searching for and retrieving

personal information can end up being a digging-everything-

inside-out expedition.

B. OBJECTIVE

The objective of this thesis is to provide an

understanding of search issues with regard to PIM on mobile

devices and develop tools for efficiently and conveniently

searching through personal information stored on mobile

devices.

C. RESEARCH METHODOLOGY

The research is comprised of three parts. First, PIM

and its subcomponents will be evaluated. Second, mobile

devices and their capabilities along with the connection

techniques with each other will be discussed. Finally, a

demonstration application will be presented.

Any useful and convenient search system for personal

information must cover mobile phones, PDAs, personal

computers and the personal data residing on the Internet.

The demonstration application included in this thesis does

exactly this: it is a search system that facilitates finding

 3

personal information dispersed over multiple devices

including mobile phones, personal computers and finally, the

internet.

D. THESIS ORGANIZATION

The remainder of the thesis is organized as follows.

Chapter II provides an overview of PIM for mobility. Search

issues in PIM and sub components of PIM will also be

evaluated in this chapter.

Chapter III describes mobile devices and their

capabilities. It introduces and provides an overview of

abilities that current mobile devices offer with comparison

to computers and previous mobile devices. Also in this

chapter, the connection techniques and schemes including

Bluetooth, GPRS, Wi-Fi will be discussed.

Chapter IV is devoted to a demonstration application

which implements search function on multiple mobile devices.

The design and implementation of the application will be

discussed in detail. The observations and application usage

scenarios will also be explained in this chapter.

Finally, Chapter V summarizes the entire study and

presents conclusions reached concerning search issues and

feasibility of applications demonstrated. Additionally,

Chapter V discusses recommendations for future research in

this area.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. OVERVIEW

Personal Information Management (PIM) describes the

acquisition, organization, and retrieval of information by

an individual user [2]. The phrase “personal information

management” was first used in the 1980s when almost everyone

expected too many things from the newly popular device of

that time -the personal computer. Among the expectations was

the huge improvement of the human ability to process and

manage information [3].

In this chapter, PIM and its subcomponents will be

discussed, and search, which is an important element of PIM,

will be elaborated.

A. OVERVIEW

PIM helps users access more information while

eliminating the risk of losing what is important at the same

time. As the cost of digital storage becomes lower and the

availability higher, more and more information is being

stored in mobile devices. But keeping everything and storing

every bit of information have obviously negative side

effects such as information overload and distracted

attention [4]. In many cases, a user looks for specific

information in this enormous pile of information. Without

proper tools and techniques it would be a time-consuming,

error-prone activity which can lead to completely

unsatisfactory result.

Better search support in PIM enables users to pinpoint

the desired information even when it is hidden in immense

accumulation of irrelevant information in different device

 6

databases. Better PIM and better tools and techniques let

users make better use of invaluable time.

B. PIM FOR MOBILITY

Figure 1. Taxonomy of PIM for Mobility.

1. Introduction to Mobile Devices

Traditionally, a mobile device is defined as a pocket-

sized computer and a communication tool which has a tiny

display screen and a miniaturized keyboard or touch-screen

interface for user input. Nowadays, mobility and wireless

communication are supported by many other types of devices

such as digital cameras, video recorders, watches even comes

 7

with the form of clothing. With a broader view, mobile

devices include descendents of PCs, PDAs, mobile phones,

PDA/mobile phone combinations, beepers and pagers, wearable

computers, watches/jewelry and cameras [6].

Portability, light weight, integrity and most

importantly communication capability are the common

characteristics of mobile devices. Recent advances in

networking technologies such as 802.11 and Bluetooth enable

these new mobile devices to connect to the Internet and

local area networks.

In recent years, the power and capacity of these

devices has become quite significant, and hence people are

beginning to store and use their information across all

these devices. For example, mobile phones which previously

only stored contact lists are now used for storing pictures,

music, video clips, calendars, task lists and notes.

As a result of the increased capacity of mobile

devices, they are now used for storing much more information

than before. Because the large amount of information stored

on mobile devices, they need specialized information

management functions. In the rest of this section, a

taxonomy of mobility related issues for information

management [13] is presented, as shown in Figure 1.

2. Management

a. Search

Search capability in PIM, which lets users to

retrieve information from different types of mobile devices,

is crucial for accessing personal information.

 8

There are significant differences between a search

for personal information and a search in a huge amount of

information collection like the Internet. Users generally

have an idea about their personal information, they usually

know some characteristics and context of the information

that resides in mobile devices, because personal information

is mostly created by the users themselves [5].

b. Power Issues

Basically, power management can be defined as

managing the battery’s charge to optimize battery

performance and longevity, preserving run and standby times

even while adding more functionality to a mobile device. The

concept has been around and it has kept importance since the

birth of mobile devices because it can have a significant

impact on the user experience.

Power management is critical because mobile

systems are usually not tethered and they are dependent on

the power source that comes with the system itself. Keeping

a mobile device light and small requires a small battery.

Consequently there is a serious need for an effective power

management. Heat generated by the device is proportional to

the amount of power consumed. Therefore, power management

helps to reduce the heat generated on a mobile device which

can affect the system and the environment in an adverse way.

And probably the most important benefit of power management

can be the prevention of disasters that could cause loss of

user data on mobile devices [6]. A depleted battery can

cause loss of critical information which is still in

progress and in the volatile memory of the device. Power

 9

management not only helps to sustain long battery life but

it can provide appropriate methods to prevent unplanned shut

downs.

Power management and information management on

mobile devices usually intersect where PIM has auto

procedures, such as indexing, information linking, etc.

These automatic or periodic operations naturally consume

power which is obviously scarce for mobile devices.

Depending on the level of power available, the frequency of

automatic indexing and linking operations may need to be

adjusted to a lower cycle.

3. Content Capture & Production

a. Tagging

Every bit of information that is stored on mobile

devices should be associated with one or more relevant terms

or tags that describe the item. These tags enable search and

classification of personal information based on different

categories.

Tagging allows users to attach their own

attributes, typically one or more, to the information pieces

created on mobile devices, this can be done manually by user

by entering specific labels or automatically with

predetermined classification information. Manual tagging

could be done by assigning the appropriate information by

the mobile user himself. Certain types of information such

as system related information including date, time and

device ID can be automatically associated. Depending on the

abilities of mobile device, tagging information can be

 10

broader and higher in details. For example, a mobile device

with GPS receiver can create tags that contain geographic

coordinates where the information is created.

There are mainly two techniques to achieve tagging

Really Simple Syndication (RSS) and MPEG7. RSS presents a

simple XML structure for describing metadata about content

which is generally called “feed” [7]. A recent extension to

RSS is the Atom syndication format [47]. MPEG7 (Multimedia

Content Description Interface) is a standard for describing

the multimedia content which lets users fast and efficient

searching for material stored on mobile devices [8]. MPEG7

descriptions of content may include: title, copyright

pointers, usage history, storage format, encoding, colors,

objects and events, summaries, variations, user preferences

and usage history. Of course, all these information are

coded in an efficient way for searching and filtering

purposes.

 11

b. Production

Today’s abundant and cheap storage makes it

possible to record most life experiences in image, video,

audio and other formats. Three ways of producing personal

information are: manual creation, auto-capturing and

synchronization. Calendar entries and to−do lists are mostly

entered directly into mobile device database by its user as

well as notes that contain simple text. Personal information

in the form of still image, video and audio can be captured

both automatically and manually. And in addition to all of

the above, any type of personal information can be copied

and created via synchronization with other devices.

c. Media type

Captured content or produced material on a mobile

device is stored in type of text, audio, video, image or

structured documents. The content of audio could be music,

ring tones or simply sound. Media type affects the size,

content and tagging issues of the information kept on mobile

devices.

4. Reception

By incorporating compact, inexpensive, self-activating

sensors and using broader network capacities, mobile devices

enable users capture information easily and passively [9].

Reception might happen in real time which may require

the mobile device to expend more of its power.

Alternatively, it can be done on demand or on a regular

basis which can be scheduled before hand.

 12

Conveying technique can use of SMS (Short Message

Service), MMM (Multi Media Service), email or ordinary file

format.

SMS can carry short text messages up to 160 characters

in length when Latin alphabets are used and 70 characters in

length when non-Latin alphabets, such as Arabic and Chinese,

are used [14].

Besides the casual exchange of information among mobile

users, the use of SMS has also expanded to other industries

such as gaming, banking, education, remote sensor

monitoring, advertising, voting, etc. [15].

MMS is a descendant of SMS. It extends text messaging

to include longer text, graphics, photos, audio clips, video

clips, or any combination of the above, within certain size

limits.

MMS is frequently used to send photos and videos from

mobile phones to other MMS capable devices or email

accounts.

User context, device and network related issues also

affect the reception.

For example, a mobile phone user might prefer only SMS

when in a meeting. Device capabilities might limit the

reception. A big picture or a picture with very high load of

color information could not be displayed properly on a

recipient device because of device characteristics.

5. Distribution & Transfer

Distribution and transfer have the same concerns as in

reception over time and technique.

 13

However repurposing has a significantly important role

when distributing personal information. There are several

hundred different mobile phones, each of which has different

display, memory, processor and user interface

characteristics. Networking profiles differ in bandwidth,

latency, cost and availability in these mobile phones as

well. It is obvious that to deliver information among

various set of these devices need special handling which

called content repurposing [10]. It primarily allows

displaying and handling of different formats of information

on numerous types of systems without need to change the

underlying code.

Another important factor regarding distribution and

transfer of personal information is format of the material.

For all the improvements that have been accomplished in

mobile world, there still are serious restrictions related

to mobile devices compared to desktop computers. Small

screens, limited network bandwidth and memory storage are

among the limitations of mobile devices. Distributing every

bit of information without cogitating the limitations of

recipient mobile device will cause problems; like device

failure, network congestion and needlessly expensive costs.

The fairly easy solution to this problem is to send only the

urgent and important part of the information in a form that

device and network can manage and process [10].

C. SEARCHING FOR PERSONAL INFORMATION

1. Overview

The number of ways to keep and manage information has

increased considerably in recent years, thanks to the

 14

overall increase in the diversity and the number of mobile

devices, technologies, and applications on which users can

rely. However, the accompanying fragmentation of personal

information multiplies the chances of storing important

information in the wrong place or form and forgetting it

altogether.

Furthermore, users may encounter information which

attracts their interests at the wrong time or at the wrong

place. For example, we may stumble upon work-related

information while we are at home and home-related

information while we are at work. These unexpected

situations usually result in save-immediately-search-later

practices.

As a result, search is a crucial function in

information management. Search helps to retrieve information

from different types of mobile devices in order to

efficiently access personal information.

Searching for personal information differs from other

searches, especially search on the Internet. On the

Internet, a user generally knows what the search result

could be and where it could be. These and other properties

can be helpful for implementing more effective search

systems on mobile devices for the improvement of hunting

personal information.

2. Background

Industry experts expect the demand for mobile search to

grow because of the increasing appeal of mobile e-commerce.

As the bandwidth of mobile networks become higher, they

become more suitable for intense and complex activities; one

 15

such activity is search. The resulting improved network

performance will encourage users to use mobile search as it

will be faster and cheaper [34].

Well known web search providers have begun providing

new mobile search services. Most of these are adaptations of

traditional keyword-based search for mobile use. These

systems adapt the display of search results to fit the small

screen of mobile devices.

3. Challenges for Mobile Search

Searching digital information through the use of mobile

devices is impacted by displays on which only a small

fraction of the set of ranked results can be displayed.

This makes for a very specific challenge: to find the

best way of presenting search results on a mobile device.

The easy but not very effective solution to this problem is

to adapt the standard web strategy which involves displaying

titles with URLs (Uniform Resource Locator) and informative

snippets of the text. This approach brings its own set of

problems, including the high demand for screen “real-estate”

that is not available on mobile devices [39]. The

elimination of informative snippets would create more harm

than help in an attempt to remedy this problem, because they

leave search at the mercy of vague result titles. It is

obvious that, there is a need for a solution to present

query results effectively on the small size of mobile device

screens. Unfortunately, no miracle formula has been found so

far. Some researchers suggest that the search effort can be

reduced by user feedback indicating a single most relevant

document in each display [32]. Jones et al. [40] also

 16

address this problem in their research. Instead of using

standard snippet text approaches, which involve the

extraction of a block of document text, often related to the

query, they use a group of key phrases, automatically

extracted from result pages. The resulting key phrases

provide for a more effective use of screen space and are at

least as informative as using long result titles.

Existing mobile search engines still need improvements

over coverage and relevance issues. Some queries either

return empty results or produce misleading result lists

which contain irrelevant results. To improve coverage,

search engines ought to improve their skills to scrutinize

the mobile resources. Since, mobile content tends to be

short-lived and transient, traditional crawling techniques

do not perform well on mobile internet. Moreover, mobile

pages contain much less information than standard web pages

which make them difficult for indexing purposes [39].

Many studies have highlighted some key observations

about online queries. First, queries used on web searches

tend to be short, generally 2 to 3 keywords on average, and

as a result, a fewer number of terms has the potential to be

non-specific and ambiguous. Second, searchers usually do not

take advantage of advanced features, filtering options, and

boolean operators to get better precision results. And

finally, users often do not bother to look further than the

first page of search results [34].

4. Related Work

The Google SMS service, launched in October 2004,

enables mobile users to access the types of information most

 17

likely needed by the user [35]. It is SMS based and allows

users to search for information when mobile. In simple

terms, the mobile user sends a query in a text message and

receives the results in one or more SMS messages. The

results in the SMS messages contain the information itself

as opposed to the Google service, which provides the

hyperlinks to other resources. The obvious advantages of

using SMS is that it does not require the user to subscribe

to special mobile data services; nor does it require upgrade

to new devices since virtually all mobile phones are SMS

enabled.

The Google SMS service is not aimed at personal

information search, and it does not include any other mobile

device apart from an SMS enabled mobile handset. It is

mainly aimed at providing search for local business

information, product prices, and similar specialized data.

Similar to Google SMS service, Leidner’s wireless

search engine [36] transmits results through SMS text

messages, but it is based on natural language queries. In

addition to traditional keyword based queries, his wireless

search engine can accept natural language type questions and

returns responses which contain likely answers rather than

hyperlinks. The system actually still implements a desktop

keyboard-based search, but the search results are mediated

by a gateway between the mobile network and the Internet in

an effort to overcome the output constraints. The gateway

“repurposes” [42] the results of the desktop search for

presentation on the small screen of mobile devices.

Raivio proposes [37] implementation guidelines for a

Mobile Proxy, search functions and data modeling enabling an

 18

optimal service solution which is located in the network and

provides users a remote file storage space. Search

functionality in a Mobile Peer-to-Peer (MP2P) system can be

done in neighboring nodes, or can be extended to Edge and

Super nodes, and other domains.

The search query can be broadcast to the adjacent edge

nodes if the super node does not contain the information. In

MP2P, there might be many nodes and any node can be any kind

of mobile device. Each proximity consists of some number of

mobile nodes which can exchange data between each other.

Another study [38] presents a general purpose

distributed search service, for mobile file sharing

applications and exchanging mobile documents, called Passive

Distributed Indexing (PDI). It is constructed on peer-to-

peer technology. It is asserted that it provides resource-

effective searching for files residing on different mobile

devices. The conveyance of queries and responses is done via

a set of messages defined in PDI. As seen in P2P networks

the forwarding of these messages is possible from node to

node. A local broadcast transmission of query-and-response

messages with the caching of results of popular queries at

every device in PDI structure establishes the main building

block of the system. With these building blocks, PDI gets

rid of the need for flooding the whole network with search

query messages.

The main design goal of PDI is to provide a general

purpose search service in mixed application domains and

system environments; whereas we focus on personal

information search scattered across several different

devices including mobile devices.

 19

D. SUMMARY

Section B offered a conceptual framework detailing the

taxonomy of PIM, as an activity consisting of four sub-

activities: management, content capture & production,

reception, and distribution & transfer.

Section C defined the search function in PIM which

enables the user to find and retrieve a collection of

personal information. A survey of existing search tools was

also provided, along with a discussion of challenges for

mobile search. Related work about mobile search also

explored in this section.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. MOBILE DEVICES AND INTERCONNECTIVITY

A. OVERVIEW

Mobile devices such as PDAs, mobile/smart phones, and

mobile computers are becoming increasingly ubiquitous and

transforming everyday lives both at home and in the office.

They profoundly diminish the distinctions between

communication and media creation, in-person interaction and

telecommunication, and real and virtual environments.

Additionally, because of recent advances in wireless

networking technologies such as Wi-Fi, mobile data services

and Bluetooth, these new mobile devices have potential uses

that greatly surpass previous intentions.

B. MOBILE DEVICE CATEGORIES

1. Mobile Phones

A mobile phone is essentially a micro-computer, which

is battery-powered, and contains one or more wireless

transmitters and receivers optimized for voice input and

output. Even the simplest model has a keypad, an LCD

display, and a general purpose computing platform, typically

Java Mobile Edition or .NET Compact Framework. More advanced

models come with an integrated camera, a few gigabytes of

local storage, and multiple wireless interfaces including

Bluetooth and even Wi-Fi [18].

In addition to mobile communication, mobile phones

support an array of functions ranging from that of a simple

digital organizer to that of a low-end personal computer.

 22

Since they are designed for mobility, they are lightweight

and compact enough to carry in a pocket.

Despite the numerous different models found on the

market, most mobile phones have a group of comparable

features and capabilities. They have a microprocessor, read

only memory (ROM), random access memory (RAM), a

communication module, a digital signal processor, a

microphone, a speaker, a keypad, and a display. A mobile

phone also has an operating system (OS) which resides on ROM

along with some system and registry files. RAM, which is

generally used to store a user’s information, is kept alive

by battery power. When the battery fails, the information in

the RAM can be lost [19].

Modern mobile phones are generally equipped with system

level microprocessors, which cut down on the number of

supporting chips, and they help to decrease the overall

power requirements of devices. Built-in support of memory

expansion cards, and interfaces for additional specialized

peripherals are among the features of latest mobile phones.

Wireless communication interfaces may also be found on

mobile phones including Bluetooth, Wi-Fi or infrared.

The line that separates mobile device categories has

been blurring recently. Some mobile phones include other

devices such as GPSs (Global Positioning System) and media

players.

Independent of the type of a mobile phone, virtually

all mobile phones offer text and voice messaging services,

and fundamental PIM applications including an address book

and a calendar. Most of the mobile phones also provide means

to synchronize personal information with other mobile

 23

devices and personal computers. More improved models support

multimedia messaging, enable direct browsing of the Internet

with built in web browsers, let users exchange emails, and

instant messaging.

2. PDA

PDAs (Personal Digital Assistant) are highly portable

and personal computing appliances, which can be carried

around and used anytime and anywhere. PDAs can be used for a

variety of functions: calculation, a clock and calendar,

accessing the Internet, sending and receiving emails, video

recording and storing data, typewriting and word processing.

They can be used as an address book, used to make and write

on spreadsheets, used as a radio or stereo, as well as for

playing computer games, recording survey responses, and GPS

(Global Positioning System) receivers. Newer PDAs also have

both color screens and audio capabilities, enabling them to

be used as web browsers, or portable media players. Many

PDAs can access the Internet, intranets or extranets via Wi-

Fi, or WWANs (Wireless Wide-Area Networks). One of the most

significant PDA characteristics is the presence of a touch

screen [21].

Modern PDAs are very small in size, fit comfortably in

a pocket and generally have good battery life, which can be

recharged at night or when at the office. A PDA usually

includes a small screen, which is often bigger than a

digital phone but smaller than the smallest notebook

computer, and a small QWERTY keyboard that is made for thumb

typing and a stylus which is a metal or plastic pen to input

data or communicate with the device by a touch pad screen. A

 24

PDA might also include handwriting recognition software,

voice recognition, and a digital voice recorder.

While components and specifications differ among

models, recent PDAs have more in common. They come equipped

with lots of RAM, storage in either miniature hard drives or

flash memory cards or sticks. Newer models have USB

interfaces which support a variety of peripherals to use

with PDAs. Some models come with a suite of software

programs preinstalled, while others offer optional programs

if desired.

A PDA might also incorporate mobile phone functionality

and wireless local area network (LAN) capability. It can

connect to the Internet in order to check email, send

messages, or even monitor the stock market. With flash card

capability, a PDA can store, access, and transfer virtually

any kind of data, including maps, spreadsheets,

presentations, and dockets.

Some experts insist that the rising popularity of

smartphones means an end for PDAs, relying on the argument

that consumers want one device that does it all. While there

are many PDAs in current use, the trend shows that PDAs are

merging with cell phones. In the near future, this might

eliminate PDAs as a distinct class of devices [22].

3. Smartphones

Technological improvements in the mobile phone market

have created a new type of mobile device called smartphone.

The most significant features of a smart phone include

Internet access, e-mail access, scheduling software, built-

in camera, contact management, and the power to run a wide

 25

variety of general and special-purpose applications as well

as occasionally the ability to read business documents in a

variety of formats such as reports, slides and spreadsheet

files. Some smartphones add extra features such as touch

screen displays and tethered modem capabilities on top of

the default phone characteristics. A rich email support is

an indispensable and a characteristic key feature found in a

smartphone [20].

Mobile phones whether basic or advanced typically use a

vendor proprietary operating system. Smartphones generally

run on one of the following operating systems: Palm OS,

Windows Mobile (phone edition), RIM OS, Symbian OS, or

Linux. These operating systems support multi-tasking and

they are designed to match the capabilities of smartphones.

They often provide Java Virtual Machine support or native

application support using a SDK (software development kit)

for a programming language [19].

As innovations allow mobile handheld devices to add

more functions to their feature sets, the difference between

these two gadgets becomes less clear. The differences

between mobile phones, smart phones and PDAs are somewhat

blurred. This has complicated efforts for reaching commonly

accepted definitions.

4. PC/Notebook

Given that wireless connectivity is available

everywhere, laptop computers are being used as truly mobile

devices. In order to describe a laptop/notebook as a mobile

device, it must have some standard features. A mobile

computer must be light enough to carry all around, it must

 26

do all of the things which can be done with a desktop

computer, and it should be able to use the same software as

its counterpart, the desktop computer [23].

Notebook computers, or simply notebooks, normally run

on a single battery or from an external power supply which

also charges the battery while supplying power. Notebooks

contain similar components that are found in desktop

computers. They characteristically have LCD screens and

built-in keyboards, and many of them are equipped with a

touchpad which is an input device that enables one to move

the cursor through finger motions. In addition, an external

mouse can be attached. The components of a notebook computer

generally are reduced in size and optimized for mobile use

and efficient power consumption.

Integrated modems and network adapters, standard serial

and parallel ports on a notebook computer make it easier to

work on mobile when away from office or home. Wi-Fi network

adapters make notebooks as easy to use with peripherals as a

desktop computer and help sustain mobility.

Since there are no universal standards for notebook

computer design and parts, it becomes very difficult and

costly to upgrade their basic components. Furthermore, to

save space and cost, manufacturers generally produce

notebooks with many of the standard elements already

integrated on the motherboard. Some exceptions to this

include RAM modules, hard drives and batteries. These issues

hinder the upgradeability of notebook computers, thus

creating higher costs in the long run.

Despite the limitations as compared to the desktop

computers, notebooks remain the preferred choice of mobile

 27

users who require data intensive applications. PDAs and

smart phones provide convenient access to corporate

information such as email and personal information, but

these devices can not compete with notebooks because of

their tiny screens, convoluted user interfaces and

restricted keypads that prevent heavy traffic from power

users. In spite of the recent improvements on other mobile

devices, notebooks will still be the most important mobile

device for remote users. Notebooks have advanced in their

power and battery utilization as well as their size and

weight. Finally, by embedding mobile broadband,

manufacturers make notebook computers truly mobile which are

no longer bounded by fixed-line connections such as Ethernet

or even by Wi-Fi hotspots, which still tether users to a

location [24].

5. Handheld Computers

Handheld computers constitute another subcategory of

mobile devices. A handheld computer often fits in a pocket

and it comes with a tiny keyboard for user input, a

relatively large display for user output. These mobile

devices are usually manufactured in a clamshell-like package

with a rich set of connectors [6]. The main difference

between PDAs and handheld computers is that the handhelds

are usually equipped with a miniature keyboard, unlike PDAs’

dual purpose (keyboard and display) touch-screen interfaces.

Handhelds are used to achieve a variety of tasks for

increasing efficiency that include digital recording,

storing notes and documents, sending and receiving invoices,

information management, and scanning barcodes.

 28

C. CONNECTION SCHEMES

1. Personal Area Networking

a. Bluetooth

Bluetooth provides a way to connect and exchange

information between devices such as mobile phones, PDAs,

PC/Notebooks, printers, digital cameras, and video game

consoles over an unlicensed short-range radio frequency.

The key features of Bluetooth wireless technology

are robustness, low power usage, and low cost. Bluetooth

offers services that enable the connection of devices and

the exchange of a variety of data between these devices

[16].

With the help of Bluetooth technology, many cables

that connect one device to another can be replaced with one

universal short-range radio link. For example, a mobile

phone equipped with Bluetooth radio technology and a

notebook would replace the burdensome cables used before to

connect a mobile phone to a notebook computer. PDAs, desktop

computers, keyboards, headsets, and almost any other digital

device can be a part of Bluetooth network system [17].

Bluetooth enables a mechanism to construct small

private ad hoc groupings of mobile devices away from fixed

network infrastructures. It is very resilient to noise which

makes it easy to operate in a noisy radio frequency

environment such as a home or an office. The Bluetooth radio

system runs on a frequency-hopping scheme and uses a fast

acknowledgement design to make the connection quality

robust.

 29

Bluetooth can reach a maximum data capacity of 1

Mbps, which is equivalent of only 780 Kbps when the protocol

overhead is taken into account.

Most of the new mobile phones are manufactured to

provide Bluetooth connection; some other mobile devices such

as PDAs and notebooks can have either integrated Bluetooth

radio modules or optional add-on devices which support the

Bluetooth radio system.

Bluetooth can be used on mobile phones in several

ways. It provides cable-free remote networking with another

mobile phone, PDA or a notebook computer. It enables mobile

phone personal information synchronization with trusted

mobile devices. And, it provides wireless hands-free

operation using a Bluetooth headset. Of course there might

be other usage models which are not discussed here.

b. Infrared

Infrared data connection is generally called with

the name IrDA (Infrared Data Association). IrDA actually

defines a standard for an interoperable universal two way

cordless infrared light transmission data port for uses such

as personal area networks (PANs). IrDA is utilized for high

speed short range, line of sight, point-to-point cordless

data transfer - suitable for mobile phones, digital cameras,

handheld data collection devices, etc. [27].

The data standard of IrDA had found a place in

millions of notebook computers, mobile phones, PDAs, and

other devices until Bluetooth connection interface has

became very popular. The market coverage of infrared

interface soared swiftly because infrared transmissions are

 30

inherently localized and governments do not regulate the

infrared portion of the light spectrum. It helps, too, that

the components of an infrared transceiver have been

perfected and their costs reduced through their successful

use in so many remote control applications.

The first IrDA standard paved the way for

asynchronous data communications at rates up to 115.2Kbps

and synchronous communications at 1.152Mbps and a

synchronous 4Mbps option was added to the standard later.

IrDA transceivers communicate via infrared pulses

in a cone that extends a minimum of 15 degrees half angle

off center. The position and location of devices have

critical importance during infrared connection. The IrDA

physical specifications require that a minimum irradiance be

maintained so that a signal is visible up to three feet

away. Likewise, the specifications necessitate that a

maximum distance not be exceeded so that a receiver is not

overwhelmed with brightness when a device comes close. It is

obvious that in order to use infrared connection there must

be a line-of-sight visibility between device infrared ports.

It has been argued that Bluetooth has been created

as a substitute for infrared. However this is not quite

true: Bluetooth has been invented as an enhancement to

Infrared, especially in terms of low cost, small volume, low

power, and the presence of infrared's limitations, such as

the its unidirectional connections, its short connectivity

range of only a few feet and its limitation to point-to-

point connections. Although Bluetooth has actually coped

with these constraints with a connectivity range of up to 30

feet, or its capability for point-to-multipoint connections,

 31

the two technologies are quite complementary. While

Bluetooth is very applicative for mobile networking,

infrared is more appropriate for the direct connections,

e.g. for exchanging small files [28].

Recent notebook computers and mobile phones do not

have an infrared port mostly because of in favor of

Bluetooth. Many experts claim that infrared connection

technology on mobile devices has come to an end. In his

article [29], Brooks wrote “Many are calling IRDA the most

popular failure in mobile technology—nearly every mobile

computer or device carries an IR port, and yet those ports

are severely underused.”

2. Mobile Data Services

Mobile Data Service (MDS), which carries digitized

information using wireless technology and personal

communication systems, supports a vast array of services

over telecommunications networks, including the Internet

[18]. A few of such services include short messaging service

(SMS), multimedia message service (MMS), email, download

services, and Internet connection services e.g. General

Packet Radio Service (GPRS).

Although there are many mobile wireless technologies,

there are just two major technology families deployed in the

mobile market: Global System for Mobile Communications (GSM)

and Code Division Multiple Access (CDMA). In both networks,

mobile users have access to voice and data services. Both in

GSM and CDMA, data access is over a channelized medium,

where separate wireless frequency channels or timeslots are

dedicated to data communication and signaling [31]. GPRS is

 32

the world's most ubiquitous wireless data service, available

now with almost every GSM network. It can provide rates of

up to 115 kbit/s [41].

A data communication process between a mobile phone and

an Internet host simply happens as follows. First, a mobile

phone that wants to send and receive IP packets starts by

requesting a packet data protocol context from the service

provider [18]. The service provider sends back an IP

address, a packet data protocol, a quality of service

specification and, optionally, a DNS name. By way of this

process, a mobile service provider can associate the mobile

phone’s unique identification number (IMEI) with its IP

address. From that point on, a standard mobile phone

location system guarantees that any data packet sent to the

mobile phone’s assigned IP address be routed to an actual

device wherever it roams. At this point, a mobile phone is

no different than any other Internet host, and it can

exchange IP packets with any other device that have a

connection to the Internet. It should be noted that, the

connection is initiated by a mobile phone in the process. If

an Internet host tries to connect to a mobile phone, it

would not be so easy [22] and that is because every time a

mobile phone establishes a GPRS connection, it is provided

with a different IP number that is exclusively accessible

within the service provider network. Also these addresses

are routable within the network only, which means that only

the users of the same service provider can reach each other.

Unless the service provider assigns a global IP number and

provides NAT (Network Address Translation), the mobile phone

is not accessible from the Internet.

 33

Data services accessed through mobile phones are still

rare. However, shrinking hardware and service costs and

subsidized handsets are enabling the mobile phone market to

grow. Additionally, heavy competition among service

providers causes voice service margins to shrink, so they

have to find ways to keep existing relationships and huge

cash flows. One way of this is to fund innovation and

provide data services and seamless worldwide roaming. These

factors are expected to make data services on cell phones

rapidly gain popularity and diversity [30].

3. WLANs

Wi-Fi is a wireless technology brand owned by the Wi-Fi

Alliance to describe wireless local area network (WLAN)

products that are based on the Institute of Electrical and

Electronics Engineers' (IEEE) 802.11 standards. A Wi-Fi

enabled device such as a notebook, mobile phone or PDA can

connect to the Internet when within range of a wireless

network connected to the Internet. The area covered by one

or several interconnected access points is called a hotspot.

Hotspots can cover areas as small as a room with wireless-

opaque walls or as large as many square miles covered by

overlapping access points.

Mobile users do not necessarily need to use wireless

interfaces; a mobile user can simply connect to fixed

networks using wired adapters after he changes location.

Consequently, mobile systems and wireless systems do not

mean the same thing. It must be stated that they converge at

many points, though. While mobile networks help to keep

 34

track of the location and support for routing, wireless

networks take care of bandwidth allocation and error

checking issues [25].

Wireless networks usually provide coverage in a small

area, such as a building, a park, or a hallway by spreading

or replacing wired networks. The mobility and flexibility of

wireless LANs generally surmount the bandwidth concerns.

Wireless LAN users have to share the bandwidth which

sometimes creates high traffic and slow connections, whereas

mobile networks are different, in this sense, by allocating

a separate channel for every user [25].

Wi-Fi also supports direct connection, also known as

ad-hoc connection, between mobile devices without the

existence of a fixed access point and where all nodes in the

network behave as routers and take part in the discovery and

maintenance of routes to other nodes in the network.

A network containing tens to thousands of mobile

devices connected with each other in such an ad hoc fashion

is called as Mobile Ad Hoc Network (MANET). In this type of

network, all nodes can freely and arbitrarily move in any

direction with any velocity, and routing takes place without

the existence of fixed infrastructure [26].

It must be emphasized that not only mobile devices can

use Wi-Fi, but many consumer devices such as desktop

computers, printers, and digital cameras might also benefit

from wireless LANS.

 35

IV. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. OVERVIEW

The more things can be saved on mobile devices, the

more it becomes difficult to find the information one is

seeking. It was easy when only phones were limited in their

capability but as the devices have become more resourceful,

their usage has expanded enormously. Today’s mobile phones

are comparable in compute capability and storage to the

desktop computers of a decade ago. Consequently, searching

and reaching the desired content on a mobile phone has been

become an important function. Users and businesses are more

dependent on mobile devices than ever before. Managing

information scattered across multiple devices is becoming a

growing problem. This chapter describes the implementation

of a search system for efficiently and conveniently

searching through personal information stored on multiple

mobile devices.

B. SEARCH

1. Aim

The aim of this system was to test the feasibility of

providing search ability as a part of personal information

management for mobility. Observations were also made which

related to the practicality of such an implementation.

 36

2. Central Idea

Considering that PIM should be expanded to include

functions that enable the users to access urgent information

whenever and wherever possible [10], the system is designed

in a way that lets the user use any available mobile device

within reach to accomplish the required search.

In other words, the user can initiate search from any

of the four device types, depending on his choice; these are

the mobile phone, PDA, the personal computer and the

Internet. Actually, for this application, the word internet

means any computer connected to the Internet. Since most

people keep at least some of their personal information on

Internet (email account, file server, etc.), expanding the

search to the online data is necessary.

Figure 2. General Architecture.

 37

The main reason for including all four platforms into

this search system is to provide flexibility and

availability to the users all of the time. If the user is

able to access his personal computer which has a large

screen, he should be able to use it to search for his

personal information as well as a small screen mobile phone.

When a person runs into a friend on a busy street, most

probably he will store the friend’s new phone number on his

mobile phone. Similarly after receiving an important call

from a new number for the first time, it is so easy to store

that number along with that contact’s name into the mobile

phone address book. Needless to say, it is so burdensome to

copy these numbers into the address book on one’s personal

computer. As a result, while phone numbers can be stored in

several places including email address books, often they are

primarily stored in the cell phones. In some enterprise

environments, employees’ phone numbers are available in

email contacts but it is a small subset of all of the phone

numbers most people need to maintain.

One of the most attractive and relatively trouble-free

places for a user to save personal information is the

Internet. These days multiple gigabytes of storage are

provided, without charge, to users for archiving email

messages, notes and contact information. And, this storage

is accessible from anywhere in the world provided that an

internet connection is available. Due to its popularity, it

is also needed to include the online data in this search

system. Hence, any useful and convenient search system for

personal information must cover mobile phones, PDAs, PCs and

the personal data residing on the Internet.

 38

3. High-Level System Architecture

The search system gives the user the freedom to

initiate search from his or her preferred available device.

If a mobile phone is the only available device, which

happens frequently for a mobile user, search can be

initiated from the mobile phone. Sometimes an internet café

is the only way for a user to reach valuable personal

information stored in the personal computer at home.

In our system, by default, search is first performed on

the device on which the query is issued. The rationale is

that if the information is available locally, it can be

quickly retrieved and delivered. The user can, however,

expand the search to include other devices as seen in figure

3.

Figure 3. High Level Architectural Diagram.

 39

For example, the user is using looking for a friend’s

contact information and she has the mobile phone with her,

when she presses the search command on her mobile phone

after entering the search criteria, the software on the

phone first searches the phone’s local database. If the

information is found, it simply displays the information and

the search process ends.

If the user prefers to extend the search, three more

options are available to make the search to include PDA, the

personal computer, or as another option extending it to the

Internet. A sample screen is seen on figure 4. Assuming

that, all options are included, if it can not find the

required information in the phone local database, the phone

sends the search query along with related criteria to the

personal computer.

Figure 4. Starting a search on the mobile phone.

 40

After the system running on the PC receives the query,

it begins to search the PC’s local database and if it finds

the requested information, the PC responds to the cell phone

with the search results. If it can not find the information,

the system extends the search to Internet. Results are

finally aggregated and sent to the mobile phone.

4. Design, Architecture and Implementation

Because it is the most supported and accepted

environment for mobile phones, Java ME (Java Platform, Micro

Edition) [43] was used to implement the software running on

the mobile phone. Mobile phones typically have an address

book (or a contact list) to keep track of people one would

like to stay in touch with, a calendar to keep track of

important events, and a to-do list to keep track of items

one does not want to forget. Next to placing a voice call,

accessing this type of personal information is possibly the

most important function in a mobile phone. The PIM API for

Java ME [45] supports mobile Java applications to read from

and write to the locally stored databases of personal

information. Even though, protected system and OS files are

generally beyond the direct reach of any user application,

files crated or copied by the user are accessible and thus

searchable by the user. This can be done with the help of

another optional package for Java ME the FileConnection API

(JSR-75) [45] that gives access to the mobile phone's file

system including removable storage media like memory cards.

The PDA and desktop portion of the software was also

developed in Java as well; many other programming languages,

such as C#, C++, etc. are also available for these platforms

though.

 41

As is always necessary, when working with mobile

devices, due to the changing mobile device capabilities and

functions (power level, network coverage, etc.), users

should be able to select how the search function be

extended, and which platforms will be included. This will

also limit the time spent when a quick-local search is

needed.

Figure 5. Component-Level Diagram.

In this search system, Google Desktop [44] is used for

computer and web searching. This tool expands the search

process further to the Internet, if it is asked to do so. It

is actually a desktop search application which provides full

text search over emails in addition to the files saved on

the computer.

 42

Searching on the personal computer, and exchanging

search queries from and results to the mobile phone is

maintained by a component of the system running on the

desktop computer. This application was created in Java and

integrated with Google Desktop. The main feature of this

program is to enable search function when the user starts

search on the personal computer. The integration between the

application and Google Desktop is done with the help of GDS

Java API [46]. It is a simple interface for access to Google

desktop search from any java application. A component level

architectural diagram is presented in figure 5.

C. OBSERVATIONS

The communication between the mobile phone and the PC

is currently accomplished with Bluetooth. The current mobile

phones generally come equipped with a Bluetooth class-2

capability which has a communication range of approximately

10 meters [16]. Bluetooth lets these devices communicate

with each other when they are in range. Since it uses a

radio communications system, the devices do not have to be

in line of sight of each other, or even in the same room, as

long as the received transmission is powerful enough.

More Wi-Fi enabled mobile phones have begun appearing

on the market. Future work in this search system could be to

provide the option of using Wi-Fi connection between a

mobile handset and personal computer.

GPRS (General Packet Radio Service) is the world's most

ubiquitous wireless data service, available now with almost

every GSM network. A GPRS connection between a mobile phone

and a PC has its own consequences and hurdles. During the

 43

experimentation, it was seen that every time a mobile phone

establishes a GPRS connection, it is provided a different IP

number that is exclusively accessible within the service

provider network. These addresses are routable within the

network only, which means that only the users of the same

service provider can reach each other. Unless the service

provider assigns a global IP number and provides NAT

(Network Address Translation), the mobile phone is not

accessible from the Internet. But the other way around, that

is accessing a PC from a mobile phone via GPRS, is possible

and it has been tested and the search system has been

already been tried over such a connection. One way to

overcome this problem might be to establish the GPRS

connection from mobile phone to PC even when the search

request has been initiated from the PC.

D. SUMMARY

In transitioning from 1G to 3G, mobile phones have

become more and more powerful. Today’s mobile phones are

capable of storing not only phone numbers but also more

detailed personal information as well as traditional

computer files. Their enhanced capability lets users store

and carry more information on their mobile phones, which

increases the importance of search on these devices. In

addition, people continue to use their “traditional” devices

such as PDAs, PCs and hosted servers.

With today’s technology it is possible to reach the

entire Internet from a mobile phone, but with its limited

bandwidth and small display, finding and retrieving the

desired information can be really tedious. With this in

mind, a simple but effective context sensitive personal

 44

information search system was implemented and presented in

this chapter which covers the entire range of mobile devices

a user may use.

What makes this system different from many other mobile

search systems is that the search for personal information

can be begun from any of the user’s devices: mobile phone,

PDA, the personal computer or the Internet. Whichever

available device is chosen, the process lets the user to

extend the search over to the other platforms. After search

has been completed the results are brought to the user on

whichever device first started the search process.

 45

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has been aimed at improving the knowledge

base for search on mobile devices regarding personal

information. Today’s mobile users encounter a wide range of

problems in managing personal information, and consequently

there is a need to develop improved interfaces to better

support this everyday activity. This research focused on one

specific area of PIM (Personal Information Management), that

of searching information scattered across multiple devices.

As discussed in Chapter-II, previous research and

applications relating to this area have been limited.

Although many studies of “search on mobility” have been

carried out, few have considered user needs beyond the

boundaries of specific environments. There is a lack of

applications for multi-platform search on mobile devices

aimed at improving PIM. Most research has been focused on

the display of search results to fit the small screen of

mobile devices. Also, there are physical limitations, such

as sluggish network speed and slow processor performance,

which have limited mobile applications from advancing more

rapidly. Users can thus wait a long time, particularly when

wireless signals is weak, for query responses. In addition

to being inconvenient, this can be time-consuming and,

therefore, expensive for mobile customers.

A demonstration search system was developed to validate

the feasibility of implementing a multi platform personal

information search on mobile devices. It was discovered that

 46

with today’s technology it is possible to manage personal

information from a mobile phone, but with its limited

bandwidth and small display, finding and retrieving the

desired information can sometimes be tedious. And, without

service providers’ active involvement in removing cross-

network barriers, an ideal implementation of remote managing

is very difficult.

B. LESSONS LEARNED

Mobile search is likely to change and improve when more

advanced devices and services become more wide-spread, such

as faster 3G-network technologies. Increased speeds improve

browser-based searching and, more importantly, enhance

advanced applications and encourage more users to try

services other than telephony. Better PIM tools and

applications can make users get more value out of their

mobile devices.

While several desktop search applications provide

access to personal information, it is evident that a broader

approach is needed to manage different types of devices that

a user can have. Simple keyword search capabilities should

be improved with user interfaces to allow users to define

their information needs based on various cues, and to view

and refine results quickly and flexibly.

C. FUTURE RESEARCH

Mobile and wireless networks are the next wave of

networking because they are truly help the mobile workforce

in an increasingly information centric society [25]. But,

there have been many challenges which relate to hardware,

 47

software and design issues. There are a number of

opportunities for improvement which stem from mobile users’

needs which mostly involve with personal information

management. One of the motivations for this thesis has been

to benchmark the early stages of mobile search with a view

to emphasizing the importance in information management.

The mobile Internet is becoming the primary form of

anytime-anywhere information access. Naturally, the

appearance of next-generation mobile devices and networks

will help to advance the quality of mobile services, and

thus user experiences. There are positive results [34]

obtained after research in this area which suggests that the

role of mobile search is on the rise and with many of their

powers big players are now looking to the mobile sector as a

new frontier.

Significant usage impact has already been made by the

early adopters of mobile search but these applications

continue to struggle with the peculiar challenges presented

by the mobile world, especially in relation to limitations

of display and text input.

The search system presented in Chapter-IV can be

improved or extended in several ways. The first improvement

is in the connection between the PC and the mobile phone.

When the search is started on a device other than the mobile

phone, the search could not be extended to include mobile

phone unless it is in the range of Bluetooth connection. The

search application on the mobile phone has the ability to

listen Bluetooth connection requests, which also enables the

conveying of queries and search results. But in a situation

where the mobile phone is far from the other devices

 48

(personal computer, a remote internet connected computer,

etc.), there is no way to trigger search application on the

mobile phone. The main cause of this problem, as discussed

in Chapter-IV, Observations section, is the cell phone

routing of traffic which is limited to within the cellular

service provider network. A bridge needs to be built between

the two networks.

Ideally, a field study should have been conducted after

the prototype was implemented to identify users’ needs in

the mobile context by observing usage of the search system

in realistic settings. Due to limited time, this study could

not be done. It will be useful to conduct this study to

check how well our system meets the user requirements.

 49

APPENDIX. DEMO APPLICATIONS

A. MOBILE PHONE

1. OVERVIEW

The search application which runs on mobile phone is

written in Java ME [43]. This application, searches the

mobile phone and displays the results if found, otherwise it

sends the query to personal computer via Bluetooth. Mobile

phones typically have an address book (or a contact list) to

keep track of people one would like to stay in touch with, a

calendar to keep track of important events, and a to-do list

to keep track of items one does not want to forget. Next to

placing a voice call, accessing this type of personal

information is possibly the most important function in a

handset. The PIM API for Java ME [45] lets mobile Java

applications read from and write to the locally stored

databases of personal information. Even though, protected

system and OS files are generally beyond the direct reach of

any user application, files crated or copied by the user are

accessible and thus searchable by the user. This can be done

with the help of another optional package for Java ME the

FileConnection API [45] that gives access to the mobile

phone's file system including removable storage media like

memory cards.

In the next section, the Java code for important

sections of this application is listed.

 50

2. PROGRAM CODE

/*
 * Created on Nov 16, 2006
 */
package mobilephone.mobcon;

import java.io.IOException;
import java.util.Vector;

import javax.bluetooth.ServiceRecord;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.Gauge;
import javax.microedition.lcdui.Ticker;
import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
import javax.microedition.rms.RecordStoreException;

import mobilephone.btcom.connection.IConnectionListener;
import mobilephone.btcom.connection.SerialConnection;
import mobilephone.btcom.device.ISelectBTConnectionListener;
import mobilephone.btcom.device.SelectBTConnectionScreen;
import mobilephone.btcom.rms.SettingStorage;
import mobilephone.btcom.tools.ILogger;

import java.io.EOFException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Enumeration;

import javax.microedition.io.Connector;
import javax.microedition.io.HttpConnection;
import javax.microedition.lcdui.Choice;
import javax.microedition.lcdui.ChoiceGroup;
import javax.microedition.lcdui.Item;
import javax.microedition.lcdui.ItemStateListener;
import javax.microedition.lcdui.List;
import javax.microedition.lcdui.Screen;
import javax.microedition.lcdui.TextBox;
import javax.microedition.lcdui.TextField;
import javax.microedition.rms.RecordComparator;
import javax.microedition.rms.RecordEnumeration;
import javax.microedition.rms.RecordFilter;
import javax.microedition.rms.RecordStore;

/**
 * Midlet to search contact on PC.
 *
 * @author Mehmet AKBAS
 * @version $Id: v 1.5
 */
public class MobileControlMidlet extends MIDlet implements
 ISelectBTConnectionListener, IConnectionListener, CommandListener {

 51

 public String cevap;

 // STATUS OF MIDLET
 private final int STATUS_INITIAL = 0;
 private final int STATUS_READ_SETTINGS = 1;
 private final int STATUS_SEARCH_URL = 2;
 private final int STATUS_WRITE_SETTINGS = 3;
 private final int STATUS_OPEN_SERIAL_CONNECTION = 4;
 private final int STATUS_CLOSE_SERIAL_CONNECTION = 5;
 private final int STATUS_CLOSE_APPLICATION = 6;
 private final int STATUS_REQUEST_APPS = 7;
 private final int STATUS_SELECT_APP = 8;
 private final int STATUS_REQUEST_CONFIG = 9;
 private final int STATUS_CONTROLLING = 10;
 private final int STATUS_SEND_SHUTDOWN = 11;

 private final int STATUS_SEARCH = 12;
 private final int STATUS_DISPLAY_SEARCH = 15;
 private final int STATUS_BROWSE = 13;
 private final int STATUS_ADD_NEW = 14;

 private int status = STATUS_INITIAL;
 // ADRESSBOOK - BEGIN
 private RecordStore addrBook;
 private static final int FN_LEN = 10;
 private static final int LN_LEN = 20;
 private static final int PN_LEN = 15;
 final private static int ERROR = 0;
 final private static int INFO = 1;
 private Display display;
 private Alert alert;
 private List mainScr;
 private String[] mainScrChoices = { "Search", "Add New", "Browse"};
 private Form searchScr;
 private TextField s_lastName;
 private TextField s_firstName;
 private Form entryScr;
 private TextField e_lastName;
 private TextField e_firstName;
 private TextField e_phoneNum;
 private List nameScr;
 private Vector phoneNums;
 private Form optionScr;
 private ChoiceGroup sortChoice;
 private TextBox dialScr;
 private int sortOrder = 1;

 private final Command cmdAdd = new Command("Add", Command.OK, 1);
 //private Command cmdBack;
 private final Command cmdCancel = new Command("Cancel", Command.BACK, 2);
 private final Command cmdDial = new Command("Dial", Command.OK, 1);
 //private Command cmdExit;
 private final Command cmdSelect = new Command("Select", Command.OK, 1);
 private final Command cmdSearchNetwork = new Command("Computer",
Command.SCREEN, 4);
 private final Command cmdSearchLocal = new Command("Phone", Command.SCREEN,
3);
 private final Command cmdSearch = new Command("Start", Command.SCREEN, 3);
 // ADRESSBOOK - END

 // COMMANDS
 // return from list form

 52

 private final Command cmdBack = new Command("Back", Command.BACK, 0);
 // break a progress bar
 private final Command cmdBreak = new Command("break", Command.BACK, 0);
 private final Command cmdExit = new Command("Exit", Command.EXIT, 0);
 private final Command cmdAbout = new Command("About", Command.SCREEN, 0);

 // DISPLAYS
 private final MobileControlList listDisplay = new MobileControlList(null,
 new Command[] { cmdExit, cmdBack, cmdAbout }, this);

 // screen, which cares for device search and url selection
 private final SelectBTConnectionScreen connectScreen = new
SelectBTConnectionScreen();

 // progress bar used in anonymic forms.
 private final Gauge progressbar = new Gauge("", false, Gauge.INDEFINITE,
 Gauge.CONTINUOUS_RUNNING);

 // Gauge Form with one command only for progress bar
 private Form gaugeForm = new Form("wait") {
 private Command lastCommand;

 /**
 * add command and remove existing ones.
 *
 * @param cmdToAdd : the Command to add
 * @...lcdui.Displayable#addCommand(javax.microedition.lcdui.Command)
 */
 public void addCommand(Command cmdToAdd) {
 //remove old command
 if (lastCommand != null) {
 this.removeCommand(lastCommand);
 }
 lastCommand = cmdToAdd;
 super.addCommand(cmdToAdd);
 }
 };

 // CONNECTIONS
 private String url = "";
 private String deviceName = "";
 private boolean connected = false;
 private SerialConnection connection;

 // implement a NULL-logger
 private ILogger nullLogger = new ILogger() {
 public void log(final String str) {
 // do nothing
 }
 };

 // APPLICATION
 private String currentApplication;
 private static final char DELIMITER_SEND = (char) 0x1;
 private static final char DELIMITER_RECEIVE = (char) 0x1;

 /**
 * Create the midlet.
 */
 public MobileControlMidlet() {
 super();

 53

 gaugeForm.append(progressbar);

 alert = new Alert("", "", null, AlertType.INFO);
 alert.setTimeout(2000);

 try {
 addrBook = RecordStore.openRecordStore("TheAddressBook", true);
 } catch (RecordStoreException e) {
 addrBook = null;
 }

 }

 /*
 * (non-Javadoc)
 *
 * @see javax.microedition.midlet.MIDlet#startApp()
 */
 protected synchronized void startApp() throws MIDletStateChangeException {

 setStatus(STATUS_INITIAL);
 updateMidlet();

 readSettings();

 if (addrBook == null) {
 displayAlert(ERROR, "Could not open address book", null);
 } else {
 genMainScr();
 }

 }

 /**
 * Update the GUI of the midlet
 */
 private synchronized void updateMidlet() {
 listDisplay.setTicker(new Ticker("updateMidlet"));
 switch (getStatus()) {
 case STATUS_INITIAL:

 if (connection != null) {
 closeConnection();
 } else {
 displayMenu();
 }
 break;

 case STATUS_READ_SETTINGS:

 displayProgressBar("Read Settings", cmdBreak);

 break;

 case STATUS_SEARCH_URL:

 displaySearchUrl();
 break;

 case STATUS_WRITE_SETTINGS:

 54

 displayProgressBar("Write Settings", cmdBreak);
 break;

 case STATUS_OPEN_SERIAL_CONNECTION:

 displayProgressBar("Open connection", cmdExit);
 break;

 case STATUS_CLOSE_APPLICATION:
 case STATUS_CLOSE_SERIAL_CONNECTION:

 displayProgressBar("Close connection", cmdExit);
 break;

 case STATUS_REQUEST_APPS:

 displayProgressBar("Request Applications", cmdBreak);
 break;

 case STATUS_SELECT_APP:

 displaySelectAppList(null);
 break;

 case STATUS_REQUEST_CONFIG:

 displayProgressBar("Request Actions", cmdBreak);
 break;

 case STATUS_CONTROLLING:
 listDisplay.setTicker(new Ticker("STATUS_CONTROLLING"));
 displaySelectActionList(null);
 break;

 case STATUS_SEARCH:
 //showInfo("No names found on the phone! \n\n"+ cevap);

 displaySearch();
 break;
 case STATUS_DISPLAY_SEARCH:
 showInfo("Nothing found on the phone! \n\n"+
 "Google Desktop found "+cevap
 + " results on the computer screen.\n\nThank you.");
 setStatus(STATUS_CONTROLLING);
 break;

 case STATUS_BROWSE:

 displayNames("Browse",null,null);
 break;

 case STATUS_ADD_NEW:

 displayAddNew();
 break;

 case STATUS_SEND_SHUTDOWN:

 displayProgressBar("Send Shutdown", cmdExit);
 break;

 }

 55

 }

 /**
 * Display a list with all actions to control the current application.
 */
 private void displaySearch() {

 setStatus(STATUS_SEARCH);

 if (searchScr == null) {
 searchScr = new Form("Search");
 //searchScr.addCommand(cmdSearchNetwork);
 searchScr.addCommand(cmdBack);
 //searchScr.addCommand(cmdSearchLocal);
 searchScr.addCommand(cmdSearch);
 searchScr.setCommandListener(this);
 s_firstName = new TextField("First name:", "", FN_LEN,
 TextField.ANY);
 s_lastName = new TextField("Last name:", "", LN_LEN,
TextField.ANY);
 searchScr.append(s_firstName);
 searchScr.append(s_lastName);
 }

 s_firstName.delete(0, s_firstName.size());
 s_lastName.delete(0, s_lastName.size());

 final Display display = Display.getDisplay(this);
 display.setCurrent(searchScr);
 }

 /**
 * Display a list with all actions to control the current application.
 */
 private void displaySelectActionList(final Vector actions) {

 setStatus(STATUS_CONTROLLING);

 if (actions != null) {
 // first time in this view => display actions & request title
 listDisplay.setNewDisplayEntries(actions);
 requestAppTitle();
 }

 // add the back command
 listDisplay.addCommand(cmdBack);
 // remove about cmd
 listDisplay.removeCommand(cmdAbout);

 // set title
 listDisplay.setTitle("Address Book - Menu");

 final Display display = Display.getDisplay(this);
 display.setCurrent(listDisplay);

 }

 /**
 * Display a list with all available applications.
 */
 private void displaySelectAppList(final Vector apps) {

 56

 setStatus(STATUS_SELECT_APP);

 if (apps != null) {
 listDisplay.setNewDisplayEntries(apps);
 listDisplay.setTicker(null);
 }

 // set title
 listDisplay.setTitle("Apps");
 // add the back command
 listDisplay.addCommand(cmdBack);
 // remove about cmd
 listDisplay.removeCommand(cmdAbout);
 listDisplay.removeCommand(cmdExit);

 final Display display = Display.getDisplay(this);
 display.setCurrent(listDisplay);

 }

 /**
 * Display a list with all available applications.
 */
 private void displayAddressMenu(final Vector apps) {

 setStatus(STATUS_CONTROLLING);

 if (apps != null) {
 listDisplay.setNewDisplayEntries(apps);
 listDisplay.setTicker(null);
 }

 // set title
 listDisplay.setTitle("Apps");
 // add the back command
 listDisplay.addCommand(cmdBack);
 // remove about cmd
 listDisplay.removeCommand(cmdAbout);

 final Display display = Display.getDisplay(this);
 display.setCurrent(listDisplay);

 }

 /**
 * Display a progress bar.
 *
 * @param title
 */
 private void displayProgressBar(final String title, final Command cmd) {

 progressbar.setLabel(title);

 if (cmd != null) {
 gaugeForm.addCommand(cmd);
 gaugeForm.setCommandListener(this);
 }

 final Display display = Display.getDisplay(this);
 display.setCurrent(gaugeForm);
 }

 57

 /**
 * Display the general menu with "Search Device" and "Connect to ...".
 *
 * @param commands
 * @param displayEntires
 */
 private void displayMenu() {

 final Vector displayEntries = new Vector();
 displayEntries.addElement("Search Device");

 if (connection != null) {
 displayEntries.addElement("Close " + deviceName);
 } else if (url != null && url.trim().length() > 0) {
 displayEntries.addElement("Connect to " + deviceName);
 }

 listDisplay.setNewDisplayEntries(displayEntries);
 // this view contains max 2 (start search/select url) entries and
 // default selection is set to second entry, as that will contain the
 // 'url' item.
 if (displayEntries.size() > 1) {
 listDisplay.setSelectedIndex(1, true);
 }

 // be sure to remove ticker
 listDisplay.setTicker(null);

 // remove the back command
 listDisplay.removeCommand(cmdBack);

 // add about cmd
 listDisplay.removeCommand(cmdAbout);
 listDisplay.addCommand(cmdExit);
 listDisplay.addCommand(cmdSelect);

 //set title
 listDisplay.setTitle("Address Book");

 final Display display = Display.getDisplay(this);
 display.setCurrent(listDisplay);
 }

 /**
 * Start the serial connection.
 */
 private synchronized void startConnection() {

 if (connection != null) {
 // another connection still open
 // closeConnection();
 showError("another connection still open");
 } else {
 openConnection();
 }

 }

 /**
 * Read the stored connection settings rom RMS.
 *
 * @return

 58

 */
 private synchronized void readSettings() {

 setStatus(STATUS_READ_SETTINGS);
 updateMidlet();

 final SettingStorage storage = new SettingStorage();
 try {
 storage.read();
 url = storage.getUrl();
 deviceName = storage.getDeviceName();

 } catch (RecordStoreException e) {

 // ignore error
 }

 setStatus(STATUS_INITIAL);
 updateMidlet();

 }

 /**
 * Write the retrieved connection settings rom RMS.
 *
 * @return
 */
 private synchronized void writeSettings() {

 setStatus(STATUS_WRITE_SETTINGS);
 updateMidlet();

 final SettingStorage storage = new SettingStorage();
 try {
 storage.setUrl(url);
 storage.setDeviceName(deviceName);
 storage.write();

 } catch (RecordStoreException e) {
 // ignore errors
 }

 }

 /*
 * @see javax.microedition.midlet.MIDlet#pauseApp()
 */
 protected void pauseApp() {
 // do nothing

 }

 /*
 * @see javax.microedition.midlet.MIDlet#destroyApp(boolean)
 */
 protected synchronized void destroyApp(boolean arg0)
 throws MIDletStateChangeException {

 sendShutDown();

 }

 59

 /*
 * (non-Javadoc)
 */
 public synchronized void urlDiscovered(final String url, final String name)
{

 this.url = url;
 this.deviceName = name;

 writeSettings();

 startConnection();

 }

 /*
 * (non-Javadoc)
 */
 public synchronized void errorOccuredDuringConnectionSearch(
 final String message) {

 setStatus(STATUS_INITIAL);

 connected = false;
 updateMidlet();
 showError(message);
 }

 private synchronized void showError(final String msg) {

 final Alert alert = new Alert("Error", msg, null, AlertType.ERROR);
 alert.setCommandListener(this);
 alert.setTimeout(Alert.FOREVER);
 Display.getDisplay(this).setCurrent(alert);

 }

 private synchronized void showInfo(final String msg) {

 final Alert alert = new Alert("Info", msg, null, AlertType.INFO);
 alert.setCommandListener(this);
 alert.setTimeout(Alert.FOREVER);
 Display.getDisplay(this).setCurrent(alert);

 }

 /**
 * Select a new connection.
 */
 private synchronized void selectNewDevice() {

 setStatus(STATUS_SEARCH_URL);
 updateMidlet();

 try {
 connectScreen.startUrlSelection(this, null, true);
 } catch (IOException e) {
 setStatus(STATUS_INITIAL);
 updateMidlet();
 showError("Device selection failed (" + e.toString() + ")");
 }
 }

 60

 /**
 * Display the BT search device screen(s).
 */
 private void displaySearchUrl() {

 final Display display = Display.getDisplay(this);
 display.setCurrent(connectScreen);
 }

 /*
 * (non-Javadoc)
 */
 public synchronized void connectionClosed() {

 connected = false;
 connection = null;

 if (getStatus() == STATUS_CLOSE_APPLICATION) {
 notifyDestroyed();
 } else {
 setStatus(STATUS_INITIAL);
 updateMidlet();
 }

 }

 /**
 * Open the serial connection.
 */
 private synchronized void openConnection() {

 setStatus(STATUS_OPEN_SERIAL_CONNECTION);
 updateMidlet();

 connection = new SerialConnection(this, nullLogger, url,
 ServiceRecord.NOAUTHENTICATE_NOENCRYPT);
 }

 /*
 * (non-Javadoc)
 */
 public synchronized void connectionOpened() {

 connected = true;

 requestApplications();

 }

 /**
 * Request all available applications. Format: "QAP"
 */
 private synchronized void requestApplications() {

 setStatus(STATUS_REQUEST_APPS);
 updateMidlet();
 sendMessage("QAP");

 }

 /**

 61

 * Request current application title. Format: "QAT0x2appname"
 */
 private synchronized void requestAppTitle() {

 if (getStatus() == STATUS_CONTROLLING) {
 sendMessage("QAT" + DELIMITER_SEND + currentApplication);
 }
 }

 /*
 * (non-Javadoc)
 */
 public synchronized void errorOccuredDuringConnection(final String message)
{

 connected = false;
 connection = null;
 if (getStatus() == STATUS_CLOSE_APPLICATION) {
 notifyDestroyed();
 } else {
 setStatus(STATUS_INITIAL);
 updateMidlet();
 showError(message);
 }
 }

 /*
 * (non-Javadoc)
 */
 public synchronized void messageSendSucceeded(int msgId) {

 if (getStatus() == STATUS_CLOSE_APPLICATION
 || getStatus() == STATUS_SEND_SHUTDOWN) {
 // last message was "QAS"
 closeConnection();
 }

 // ignore other messages confirmations
 }

 /*
 * (non-Javadoc)
 */
 public synchronized void receiveMessage(final String message) {

 if (message.length() > 3) {
 cevap = message.substring(3);
 }

 if (getStatus() == STATUS_CONTROLLING
 && (message.startsWith("RAT") || message.startsWith("RAA"))) {

 receiveNewTitle(message);

 } else if (getStatus() == STATUS_REQUEST_APPS
 && message.startsWith("RAP")) {

 receiveApplications(message);

 } else if (getStatus() == STATUS_REQUEST_CONFIG
 && message.startsWith("RAC")) {

 62

 receiveConfiguration(message);

 }

 }

 /**
 * Receive a new title. Message format "RATtitle".
 *
 * @param message
 */
 private void receiveNewTitle(final String message) {

 if (message.length() > 3) {
 listDisplay.setTicker(new Ticker(message.substring(3)));
 listDisplay.setTicker(null);
 }
 }

 /**
 * Receive a new configuration with an action list for the current
 * application. Format: "RACaction0x1action0x1"
 *
 * @param message
 */
 private synchronized void receiveConfiguration(final String message) {

 if (message.length() > 3) {
 final Vector actions = getStrings(message.substring(3),
 DELIMITER_RECEIVE);

 displaySelectActionList(actions);
 }
 }

 /**
 * Return String elements tokenized excluding delimiter.
 *
 * @param string
 * the string to tokenize
 * @param delimiter
 * the char to overread
 * @return Vector of String
 */
 private static Vector getStrings(String string, char delimiter) {

 Vector result = new Vector();
 int delimPos = 0;
 while (delimPos >= 0) {
 int nextDelimPos = string.indexOf(delimiter, delimPos);
 if (nextDelimPos >= 0) {
 String element = string.substring(delimPos, nextDelimPos);
 result.addElement(element);
 } else {
 return result;
 }
 delimPos = nextDelimPos + 1;
 }
 return result;
 }

 /**

 63

 * Receive a new list of available applications. Format:
 * "RAPaction0x1action0x1"
 *
 * @param message
 */
 private synchronized void receiveApplications(String message) {

 if (message.length() > 3) {
 final Vector apps = getStrings(message.substring(3),
 DELIMITER_RECEIVE);

 displaySelectAppList(apps);
 }
 }

 /**
 * Send a test message
 *
 * @param string
 */
 private synchronized void sendMessage(final String msg) {

 if (connection != null && connected) {
 connection.sendMessage(msg);
 }

 updateMidlet();

 }

 /**
 * Close the serial connection.
 */
 private void closeConnection() {

 if (connection == null && getStatus() == STATUS_CLOSE_APPLICATION) {
 notifyDestroyed();
 return;
 }
 if (connection != null) {
 if (getStatus() != STATUS_CLOSE_APPLICATION) {
 setStatus(STATUS_CLOSE_SERIAL_CONNECTION);
 }
 connected = false;
 updateMidlet();
 connection.close();

 }

 }

 public synchronized void searchAborted() {

 setStatus(STATUS_INITIAL);

 connected = false;
 updateMidlet();

 }

 /**
 * A command was executed.

 64

 *
 * @param command
 * @param screen
 * @see ...CommandListener#commandAction(javax.microedition.lcdui.Command,
 * javax.microedition.lcdui.Displayable)
 */
 public synchronized void commandAction(final Command command,
 final Displayable screen) {

 if (getStatus() == STATUS_CLOSE_APPLICATION) {
 // DO NOT ALLOW ANY NEW COMMANDS
 return;
 }

 if (command == Alert.DISMISS_COMMAND) {
 // Alert closed

 updateMidlet();

 } else if (command == cmdBack || command == cmdBreak || command ==
cmdCancel) {
 // BACK

 if (getStatus() == STATUS_REQUEST_CONFIG
 || getStatus() == STATUS_CONTROLLING) {
 requestApplications();
 } else if (getStatus() == STATUS_SELECT_APP) {
 sendShutDown();
 } else if (getStatus() == STATUS_ADD_NEW) {
 setStatus(STATUS_CONTROLLING);
 updateMidlet();
 } else if (getStatus() == STATUS_BROWSE) {
 setStatus(STATUS_CONTROLLING);
 updateMidlet();
 } else if (getStatus() == STATUS_SEARCH) {
 setStatus(STATUS_CONTROLLING);
 updateMidlet();
 } else {
 setStatus(STATUS_INITIAL);
 updateMidlet();
 }

 } else if (command == cmdExit) {
 // EXIT

 closeApp();

 } else if (command == cmdAbout) {
 // show about info
 showAbout();

 } else if ((getStatus() == STATUS_BROWSE) || (command == cmdDial)){

 showAbout();

 } else if ((getStatus() == STATUS_ADD_NEW) || (command == cmdAdd)){

 displayAddConfirm();

 } else if (command == cmdSearch) {
 // SELECT APP
 listDisplay.setTicker(new Ticker("command == cmdSearch"));

 65

 // display search of local addr book
 displayNames("Search Result", s_firstName.getString(),
s_lastName.getString());

 } else if (getStatus() == STATUS_SELECT_APP) {
 // SELECT APP

 currentApplication = listDisplay.getString(listDisplay
 .getSelectedIndex());
 applicationSelected();

 } else if (getStatus() == STATUS_CONTROLLING) {
 // SELECT ACTION

 final String action = listDisplay.getString(listDisplay
 .getSelectedIndex());
 actionSelected(action, command, screen);

 } else if (getStatus() == STATUS_INITIAL) {
 // MENU SCREEN

 final int index = listDisplay.getSelectedIndex();
 switch (index) {
 case 0: // "Search Device"
 selectNewDevice();
 break;
 case 1: // "Connect to ..."
 startConnection();
 break;
 }

 }
 }

 /**
 * Show About information
 */
 private void showAbout() {
 showInfo("MobilePC\nMobilePC created in 2006 by Mehmet AKBAS");

 }

 /**
 * Send a SHUTDOWN message
 */
 private void sendShutDown() {

 if (getStatus() != STATUS_CLOSE_APPLICATION) {
 setStatus(STATUS_SEND_SHUTDOWN);
 }
 updateMidlet();
 sendMessage("QAS");
 }

 /**
 * Search screen.
 *
 * Displays two <code>TextField</code>s: one for first name, and one for
 * last name. These are used for searching the address book.
 *
 * @see AddressBookMIDlet#genNameScr

 66

 */
 private Screen genSearchScr() {
 if (searchScr == null) {
 searchScr = new Form("Search");
 searchScr.addCommand(cmdSearchLocal);
 searchScr.addCommand(cmdSearchNetwork);
 searchScr.addCommand(cmdBack);
 searchScr.setCommandListener(this);
 s_firstName = new TextField("First name:", "", FN_LEN,
 TextField.ANY);
 s_lastName = new TextField("Last name:", "", LN_LEN,
TextField.ANY);
 searchScr.append(s_firstName);
 searchScr.append(s_lastName);
 }

 s_firstName.delete(0, s_firstName.size());
 s_lastName.delete(0, s_lastName.size());

 display.setCurrent(searchScr);
 return searchScr;
 }

 /**
 * Generates a list of first/last/phone numbers. Can be called as a result
 * of a browse command (genBrowseScr) or a search command (genSearchScr).
 *
 * title title of this screen (since it can be called from a browse or a
 * search command. f if not null, first name to search on l if not null,
 * last name to search on
 */
 private void displayNames(String title, String f, String l) {
 SimpleComparator sc;
 SimpleFilter sf = null;
 RecordEnumeration re = null;
 phoneNums = null;

 sc = new SimpleComparator(
 sortOrder == 0 ? SimpleComparator.SORT_BY_FIRST_NAME
 : SimpleComparator.SORT_BY_LAST_NAME);

 if (f != null || l != null) {
 sf = new SimpleFilter(f, l);
 }

 try {
 re = addrBook.enumerateRecords(sf, sc, false);
 } catch (Exception e) {
 showError("Could not create enumeration: " + e);
 // return null;
 }

 nameScr = null;
 if (re.hasNextElement()) {
 nameScr = new List(title, List.IMPLICIT);
 nameScr.addCommand(cmdBack);
 nameScr.addCommand(cmdDial);
 nameScr.setCommandListener(this);
 phoneNums = new Vector(6);

 try {

 67

 while (re.hasNextElement()) {
 byte[] b = re.nextRecord();
 String pn = SimpleRecord.getPhoneNum(b);
 nameScr.append(SimpleRecord.getFirstName(b) + " "
 + SimpleRecord.getLastName(b) + " "
 + SimpleRecord.getPhoneNum(b), null);
 phoneNums.addElement(pn);
 }
 } catch (Exception e) {
 showError("Error while building name list: " + e);
 // return null;
 }

 final Display display = Display.getDisplay(this);
 display.setCurrent(nameScr);

 } else {
 final String msg = "QAA" + f + " " + l + DELIMITER_SEND +
currentApplication;
 sendMessage(msg);

 setStatus(STATUS_DISPLAY_SEARCH);
 updateMidlet();
 connection.handleReceivedMessage()onListener .c
.handleReceivedMessage(new byte[] msageBytes);
 showInfo("No names found on the phone! \n\n"+ cevap);
 }

 }

 /**
 * Add an entry to the address book. Called after the user selects the
 * addCmd while in the genEntryScr screen.
 */
 private void displayAddNew() {
 if (entryScr == null) {
 entryScr = new Form("Add new");
 entryScr.addCommand(cmdCancel);
 entryScr.addCommand(cmdAdd);
 entryScr.setCommandListener(this);

 e_firstName = new TextField("First name:", "", FN_LEN,
 TextField.ANY);
 e_lastName = new TextField("Last name:", "", LN_LEN,
TextField.ANY);
 e_phoneNum = new TextField("Phone Number", "", PN_LEN,
 TextField.PHONENUMBER);
 entryScr.append(e_firstName);
 entryScr.append(e_lastName);
 entryScr.append(e_phoneNum);
 }

 e_firstName.delete(0, e_firstName.size());
 e_lastName.delete(0, e_lastName.size());
 e_phoneNum.delete(0, e_phoneNum.size());

 final Display display = Display.getDisplay(this);
 display.setCurrent(entryScr);
 }

 private void displayAddConfirm() {

 68

 String f = e_firstName.getString();
 String l = e_lastName.getString();
 String p = e_phoneNum.getString();

 byte[] b = SimpleRecord.createRecord(f, l, p);

 try {
 addrBook.addRecord(b, 0, b.length);
 showInfo("Record added");
 setStatus(STATUS_CONTROLLING);
 //updateMidlet();

 } catch (RecordStoreException rse) {
 showError("Could not add record" + rse);
 }
 }

 /**
 * A new action is selected => send to serial connection. Format:
 * "QAAaction0x2appname"
 *
 * @param action
 */
 private synchronized void actionSelected(final String action, Command c,
Displayable d) {

 if ((c == List.SELECT_COMMAND) || (c == cmdSelect)) {
 if (action.equals("Search")) {
 //showInfo("Search");
 //displaySearch();
 setStatus(STATUS_SEARCH);
 final String msg = "QAA" + action + DELIMITER_SEND +
currentApplication;
 sendMessage(msg);
 } else if (action.equals("Browse")) {
 //showInfo("Browse");
 setStatus(STATUS_BROWSE);
 } else if (action.equals("Add New")) {
 //showInfo("Add_New");
 setStatus(STATUS_ADD_NEW);
 } else
 setStatus(STATUS_CONTROLLING);
 }

 updateMidlet();

 }

 /**
 * A new action is selected => send to serial connection to get
 * configuration. Format: "QAC0x2appname"
 *
 */
 private synchronized void applicationSelected() {

 setStatus(STATUS_REQUEST_CONFIG);
 final String msg = "QAC" + DELIMITER_SEND + currentApplication;
 sendMessage(msg);

 }

 69

 /**
 * Close the application.
 */
 private synchronized void closeApp() {

 setStatus(STATUS_CLOSE_APPLICATION);
 if (connection != null) {
 sendShutDown();
 } else {
 notifyDestroyed();
 }

 }

 /**
 * Get the status of the midlet.
 *
 * @return
 */
 private int getStatus() {
 return status;
 }

 /**
 * Set the status of the midlet.
 *
 * @param newStatus
 */
 private synchronized void setStatus(final int newStatus) {

 if (getStatus() != STATUS_CLOSE_APPLICATION) {
 //do not change status during closing of application

 this.status = newStatus;
 }
 }

 /**
 * No log screen for this application.
 *
 */
 public void viewLogScreen() {
 // ignore

 }

 /**
 * Display an Alert on the screen
 *
 * @param type : One of the following: ERROR, INFO
 * @param msg : Message to display
 * @param s : screen to change. if null, revert to main screen
 */
 private void displayAlert(int type, String msg, Screen s) {
 alert.setString(msg);

 switch (type) {
 case ERROR:
 alert.setTitle("Error!");
 alert.setType(AlertType.ERROR);
 break;

 70

 case INFO:
 alert.setTitle("Info");
 alert.setType(AlertType.INFO);
 break;
 }
 final Display display = Display.getDisplay(this);
 display.setCurrent(alert, s == null ? display.getCurrent() : s);
 }

}

 71

B. PC

1. OVERVIEW

The software that runs on personal computer simply

serves as a listener when a search is initiated at the

mobile phone. If a query is received from the mobile phone

the query is translated into a proper form for Google

Desktop application, and the search results are sent back to

the mobile phone. If the query contains related flags which

trigger Internet search, Google desktop application extends

the search to the Web. If the search is started at the

personal computer, this application first searches the local

device and then extends the search to include mobile phone,

if needed.

2. LIBRARIES AND APPLICATIONS

This application was created in Java. The integration

between this application and Google Desktop is done with the

help of GDS Java API [46]. It is a simple interface for

access to Google desktop search from any java application.

3. PROGRAM CODE

The java code listed here is the class of the

application, which processes the messages coming from the

mobile phone.

 72

/*
 **
 *
 * Java Tools for common purposes.
 *
 **/
package mobilepc.appcontrol;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.util.List;

import javax.swing.JOptionPane;
import javax.swing.UIManager;

import com.thoughtworks.xstream.XStream;
import com.thoughtworks.xstream.io.xml.DomDriver;

import mobilepc.appcontrol.log.Logger;
import mobilepc.appcontrol.remote.RemoteHandler;
import mobilepc.appcontrol.remote.RemoteHandlerException;

import javax.swing.*;
import java.awt.*;
import java.lang.*;
import java.awt.event.*;
import javax.swing.JCheckBoxMenuItem;
import java.util.Iterator;

import javax.xml.bind.JAXBException;

import jgd.JGDError;
import jgd.JGDQuery;
import jgd.Util;
import jgd.jaxb.Results;
import jgd.jaxb.ResultsType;

/**
 *
 * The RemoteControl type is the main class which allows com port remote
 * controlling.
 */
public class RemoteControl extends JFrame implements MessageReciever {
 /**
 * Default frame width
 */
 private static final int FRAME_WIDTH = 640;

 /**
 * Default frame height
 */
 private static final int FRAME_HEIGHT = 480;

 /**
 * X coordinate of the frame default origin point
 */
 private static final int FRAME_X_ORIGIN = 100;

 73

 /**
 * Y coordinate of the frame default origin point
 */
 private static final int FRAME_Y_ORIGIN = 60;

 JTextArea jtOutput;

 /**
 * Default config file name
 *
 * @see AppControlConfig for details.
 */
 private static String CONFIG_FILE_NAME = "config.xml";

 /** the version number */
 public static String Version = "V1.2.1";

 /**
 * Start the program.
 *
 * @param args
 * first arg is used for xml config file name
 */
 public static void main(String[] args) {
 // set landf
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 } catch (Exception e) {
 }
 // select file name for config file
 String configFileName = CONFIG_FILE_NAME;
 if (args.length >= 1) {
 configFileName = args[0];
 }
 try {
 RemoteControl frame = new RemoteControl(configFileName);
 frame.setVisible(true);

 // run control
 // new RemoteControl(configFileName);
 } catch (Exception e) {
 System.err.println("Remote Control could not be run: " + e);
 showErrorDialog("Remote Control could not be run started\n" + e);
 System.exit(-1);

 } catch (Error e) {
 System.err.println("Remote Control could not be run: " + e);
 showErrorDialog("Remote Control could not be run started\n" + e);
 e.printStackTrace();
 System.exit(-1);
 }
 }

 /**
 * @param error
 */
 public static void showAboutDialog() {
 JOptionPane
 .showMessageDialog(
 null,
 "Mobile Bluetooth Connection"
 + Version

 74

 + "\n\nMobile device to use Bluetooth connection.\n",
 "About", JOptionPane.INFORMATION_MESSAGE);

 }

 /**
 * Show an error to the user.
 *
 */
 private static void showErrorDialog(String error) {
 JOptionPane.showMessageDialog(null, error, "Problem occured",
 JOptionPane.ERROR_MESSAGE);

 }

 /** the connectivity to the remote device */
 private RemoteHandler comms;

 /** the configuration */
 private AppControlConfig configuration;

 /** the control instance to use for talking to the window system */
 private AppControl control;

 /** shutdown indicator */
 private boolean shutdown;

 /** simple gui */
 private TrayInterface tray;

 /** Log */
 private Logger log = Logger.getInstance();

 /**
 * Construct the type.
 *
 * @param configFile
 * the config file name to use
 * @throws AppControlException
 * is thrown if object could not be built.
 */
 public RemoteControl(String configFile) throws AppControlException {
 super();
 jtOutput = new JTextArea(5, 20);
 jtOutput.setLineWrap(true);
 jtOutput.setWrapStyleWord(true);
 jtOutput.setEditable(false);
 jtOutput.setFont(new Font("Verdana", Font.BOLD, 12));
 JScrollPane scrollPane = new JScrollPane(jtOutput,
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
 getContentPane().add(scrollPane, java.awt.BorderLayout.CENTER);
 setTitle("Google Desktop - Mobile Search Results");
 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 setResizable(true);
 setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 jtOutput.append("->Waiting for the query?"+"\n");

 synchronized (this) {
 log.addLog(new String[] { "Mobile Control started. Version: ",

 75

 Version });
 initializeConfiguration(configFile);
 initializeControl();
 initializeCommunication();
 }
 initializeTray();
 registerShutdownHook();
 }

 /**
 * Search matching Application Interaction for the message recieved.
 *
 * @return an AppInteraction to use or first if none found to match
 */
 private AppInteraction getInteraction(RemoteMessage msg) {
 // search for name matches
 return configuration.getAppInteractionByName(msg
 .getApplicationIdentifier());
 }

 /**
 * Do the action.
 *
 * @param msg
 */
 private void handleRequestAction(RemoteMessage msg) {
 // locate app
 AppInteraction interaction = getInteraction(msg);

 String result = "";
 //log
 log.addLog(new String[] { "RecievedMessage: Action ", msg.getPayLoad(),
 " on ", interaction.getNameForDisplay() });

 // call app
 try {
 if (interaction != null) {
 result = interaction.invokeAction(control, msg.getPayLoad());
 //log
 log.addLog(new String[] { "SendMessage: Action for ",
 interaction.getNameForDisplay(), " is ", result });
 } else {
 result = msg.getApplicationIdentifier()
 + " not found in config.";
 tray.showMessage("Problem occured", result);
 //log
 log.addLog(new String[] { "RecievedMessage: Action failed ",
 result });

 }
 } catch (AppControlException e) {
 result = interaction.getNameForDisplay()
 + " > Action failed. Check applications and retry";
 tray.showMessage("Problem occured", result);
 //log
 log
 .addLog(new String[] { "RecievedMessage: Action failed ",
 result });
 e.printStackTrace();
 rebuildAccess();
 }

 76

 try {
 // send back new title.
 comms.sendMessage(RemoteMessage.createReplyAction(result));
 } catch (RemoteHandlerException e) {
 e.printStackTrace();
 tray.showMessage("Problem occured: ", e.toString());
 //log
 log.addLog(new String[] { "RecievedMessage: Action failed ",
 e.toString() });
 }
 }

 /**
 * Deliver remote control actions for an application
 *
 * @param msg
 */
 private void handleRequestAppConfig(RemoteMessage msg) {
 AppInteraction interaction = getInteraction(msg);
 if (interaction == null) {
 String result = msg.getApplicationIdentifier()
 + " not found in config.";
 tray.showMessage("Problem occured", result);
 //log
 log.addLog(new String[] { "RecievedMessage: GetConfig ", result });
 return;
 }
 //log
 log.addLog(new String[] { "RecievedMessage: GetConfig "
 + interaction.getNameForDisplay() });

 // singal tray
 tray.setConnected(true, interaction.getNameForDisplay());
 tray.showMessage("Control acquired", interaction.getNameForDisplay());

 try {
 // send Actions
 comms.sendMessage(RemoteMessage.createReplyConfig(interaction
 .getAvailableActions()));
 //log
 log.addLog(new String[] { "SendMessage: GetConfig ",
 interaction.getNameForDisplay(), " ",
 interaction.getAvailableActions().toString() });
 } catch (RemoteHandlerException e) {
 e.printStackTrace();
 tray.showMessage("Problem occured: ", e.toString());
 //log
 log.addLog(new String[] { "RecievedMessage: GetConfig failed ",
 e.toString() });
 }
 }

 /**
 * Retrieve all configured application sets.
 */
 private void handleRequestApplications() {
 //log
 log.addLog("RecievedMessage: GetApps ");
 String[] logStrings = new String[configuration.applications.length + 1];
 logStrings[0] = "SendMessage: GetApps: ";
 for (int i = 0; i < configuration.applications.length; i++) {
 logStrings[i + 1] = configuration.applications[i]

 77

 .getNameForDisplay();
 }
 log.addLog(logStrings);

 // send data
 try {
 comms.sendMessage(RemoteMessage
 .createReplyApplication(configuration.applications));
 } catch (RemoteHandlerException e) {
 e.printStackTrace();
 tray.showMessage("Problem occured: ", e.toString());
 //log
 log.addLog(new String[] { "RecievedMessage: GetApps failed ",
 e.toString() });
 }
 }

 /**
 * Retrieve application title.
 */
 private void handleRequestAppTitle(RemoteMessage msg) {

 String title = "";
 // get Interaction from message.
 AppInteraction interaction = getInteraction(msg);
 //log
 log.addLog(new String[] { "RecievedMessage: GetTitle for ",
 interaction.getNameForDisplay() });
 try {
 // retrieve title
 if (interaction != null) {
 title = control.getCurrentTitle(interaction.getTitleRegex());
 //log
 log.addLog(new String[] { "SendMessage: GetTitle for ",
 interaction.getNameForDisplay(), " is ", title });
 } else {
 title = msg.getApplicationIdentifier()
 + " not found in config.";
 tray.showMessage("Problem occured", title);
 //log
 log.addLog(new String[] {
 "RecievedMessage: GetTitle failed: ", title });
 }

 } catch (AppControlException e1) {
 title = interaction.getNameForDisplay()
 + " > Title not available. Check applications.";
 tray.showMessage("Problem occured", title);
 //log
 log.addLog(new String[] { "RecievedMessage: GetTitle failed: ",
 title, e1.toString() });
 e1.printStackTrace();
 rebuildAccess();
 }
 try {
 comms.sendMessage(RemoteMessage.createReplyCurrentTitle(title));
 } catch (RemoteHandlerException e) {
 e.printStackTrace();
 tray.showMessage("Problem occured: ", e.toString());
 //log
 log.addLog(new String[] { "RecievedMessage: GetTitle failed ",
 e.toString() });

 78

 }
 }

 /**
 * Init communication to the remote system.
 */
 private void initializeCommunication() throws AppControlException {
 try {
 comms = new RemoteHandler(this, configuration.portNumber);
 } catch (RemoteHandlerException e) {
 throw new AppControlException(
 "Remote Handler could not be initialized. Check port.", e);
 }
 }

 /**
 * Read config file to build configuration.
 *
 * @param configFile
 * filename to read from
 * @throws AppControlException
 */
 private void initializeConfiguration(String configFile)
 throws AppControlException {

 XStream xstream = new XStream(new DomDriver());
 xstream.alias("appInteraction", GenericInteraction.class);
 xstream.alias("keyAction", KeyAction.class);
 xstream.alias("AppControlConfig", AppControlConfig.class);

 try {
 FileReader fr = new FileReader(configFile);
 configuration = (AppControlConfig) xstream.fromXML(fr);
 configuration.init();
 log.addLog("Config init. Port COM" + configuration.portNumber);
 } catch (FileNotFoundException e) {
 throw new AppControlException("File Not Found: " + configFile);
 } catch (AppControlException e) {
 throw e;
 } catch (Exception e) {
 throw new AppControlException(
 "Config could not be read. Check XML File structure. ("
 + e.toString() + ")", e);
 }

 }

 /**
 * Set the configured Control Class.
 *
 * @throws AppControlException
 * if Control Class could not be build
 *
 */
 private void initializeControl() throws AppControlException {
 Class clazz;
 try {
 clazz = Class.forName(configuration.appControlClass);
 control = (AppControl) clazz.newInstance();
 // lets see, what is running
 List titles = control.getActiveTitles();
 log.addLog(new String[] { "Control init. Titles: ",

 79

 titles.toString() });
 } catch (Exception e) {
 throw new AppControlException("Configured control class "
 + configuration.appControlClass + " could not be created",
 e);
 } catch (Error e) {
 throw new AppControlException("Configured control class "
 + configuration.appControlClass + " could not be created",
 e);
 }

 }

 /**
 * Init the Tray.
 */
 private void initializeTray() {
 tray = new TrayInterface(this);
 }

 /**
 * Work an Error and shutdown application.
 *
 * @param error
 * the String explaining the error
 * @param t
 * the Throwable causing the Error
 */
 public void processError(String error, Throwable t) {
 showErrorDialog(error);
 shutdown();
 }

 /**
 * process a message as Message Reciever.
 *
 * @param msg -
 * the remote message to check
 */
 public synchronized void processMessage(RemoteMessage msg) {
 String queryString = new String(msg.getPayLoad());
 if (msg.getType() == RemoteMessage.REQUEST_ACTION) {
 System.out.println(queryString);
 jtOutput.append("\n" + "->Searching : " + queryString + "\n");
 Results r = null;
 try {
 if (queryString.length() <= 1)
 queryString = "bos";
 JGDQuery q = new JGDQuery(queryString);
 q.setNum(new Integer(25));
 q.setStart(new Integer(0));
 q.setSortedByRelevance() ;
 q.setFilterByFiles() ;
 q.setFileType("doc");

 r = q.execute();

 // send data
 try {
 comms.sendMessage(msg.createReplyAction(" " +
r.getCount()));
 } catch (RemoteHandlerException e) {

 80

 e.printStackTrace();
 tray.showMessage("Problem occured: ", e.toString());
 }

 //System.out.println();

 //System.out.println("First 25 of Results:" + r.getCount());

 if (r.getCount() == 0){
 jtOutput.append("\n" + "->Nothing found!" + "\n");

 } else if (r.getCount() < 25){
 jtOutput.append("\n" + "->First " + r.getCount()+ " of a
total of " + r.getCount() + " results:\n");
 } else {
 jtOutput.append("\n" + "->First 25 of a total of " +
r.getCount() + " results:\n");
 }

 //System.out.println();
 jtOutput.append("---------------------" + "\n");

 List l = r.getResult();
 for (Iterator i = l.iterator(); i.hasNext();) {
 ResultsType.ResultType element = (ResultsType.ResultType)
i.next();
 jtOutput.append(element.getUrl() + "\n");

 }
 jtOutput.append(==================================" + "\n");
 jtOutput.setCaretPosition(jtOutput.getText().length());
 } catch (JGDError ex) {
 ex.printStackTrace();
 }
 }

 // evaluateType
 if (msg.getType() == RemoteMessage.REQUEST_APPS) {
 handleRequestApplications();
 } else if (msg.getType() == RemoteMessage.REQUEST_SHUTDOWN) {
 // means remote device will not sent anything anymore, so disconnect
 tray.setConnected(false, null);
 //log
 log.addLog("RecievedMessage: Shutdown");
 } else if (msg.getType() == RemoteMessage.REQUEST_APP_CURRENT_TITLE) {
 handleRequestAppTitle(msg);
 } else if (msg.getType() == RemoteMessage.REQUEST_APP_CONFIG) {
 handleRequestAppConfig(msg);
 } else if (msg.getType() == RemoteMessage.REQUEST_ACTION) {
 // handleRequestAction(msg);
 } else {
 log.addLog(new String[] { "RecievedMessage: Unknown Message ",
 msg.getPayLoad() });
 }
 }

 /**
 * Renew control of window system.
 */
 private void rebuildAccess() {

 81

 try {
 List titles = control.renewActiveTitles();
 log.addLog(new String[] { "Control Renew. Titles: ",
 titles.toString() });
 } catch (AppControlException e2) {
 e2.printStackTrace();
 log.addLog(new String[] { "Control Renew. Exception: ",
 e2.toString() });
 }
 }

 /**
 * use shutdown hook for shutting down connectivity.
 */
 private void registerShutdownHook() {
 Thread hook = new Thread("RemoteControl Shutdown Hook") {
 public void run() {
 RemoteControl.this.shutdown();
 }
 };
 Runtime.getRuntime().addShutdownHook(hook);
 }

 /**
 * Shutdown the program.
 */
 public void shutdown() {
 // shutdown once only
 if (shutdown)
 return;
 shutdown = true;
 // tray down
 if (tray != null) {
 tray.shutDown();
 }

 // comms down
 synchronized (this) {
 if (comms != null)
 comms.shutdown();
 }
 // exit
 System.exit(0);
 }

}

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

LIST OF REFERENCES

[1] J. Teevan, W. Jones, and B. B. Bederson, “Personal
Information Management”, Communications Of ACM, vol.49,
no.1, pp. 40-43, January 2006.

[2] R. Boardman, “Improving Tool Support for Personal
Information Management”, Ph.D. Thesis, Department of
Electrical and Electronic Engineering, Imperial College
London and University of London, July 2004.

[3] M. Lansdale, “The Psychology Of Personal Information
Management”, Applied Ergonomics 19, pp. 55–66, 1998.

[4] W.F. Jones, “Keepers? The Present and Future Perfect In
Support Of Personal Information Management”, First
Monday 9, p. 3, March 2004.

[5] E. Cutrell, “Searching to Eliminate Personal
Information Management”, Communications of ACM, vol.49,
no.1, January 2006.

[6] G. Singh, “Mobile Devices”, Course Slides for CS4135,
Department of Computer Science, Naval Postgraduate
School, April 2007.

[7] T. Hammond, T. Hannay, and B. Lund, “The Role of RSS in
Science Publishing”, D-Lib Magazine, vol. 10, pp. 1082-
9873, 2004.

[8] B.S. Manjunath, P. Salembier, and T. Sikora,
“Introduction to MPEG-7: Multimedia Content Description
Interface”, Wiley & Sons, April 2002.

[9] M. Czerwinski, D.W. Gage, J. Gemmell, C.C. Marshall,
M.A. Pérez-Quiñonesis, M.M. Skeels, and T. Catarci,
“Digital Memories in an Era of Ubiquitous Computing and
Abundant Storage”, Communications Of ACM, vol.49, no.1,
January 2006.

[10] G. Singh, “PIM for Mobility”, ACM SIGIR Workshop on
Personal Information Management, pp. 98-101, Seattle,
WA, August 2006.

[11] L.D. Paulson, “Search Technology Goes Mobile”, Computer
Magazine, pp. 19-22, August 2005.

 84

[12] R. Schusteritsch, S. Rao, and K. Rodden, “Mobile Search
with Text Messages: Designing the User Experience for
Google SMS”, pp. 1777-1780, CHI 2005.

[13] G. Singh, “A Taxonomy of Personal Information
Management for Mobile Users”, Working paper, Department
of Computer Science, Naval Postgraduate School, 2007.

[14] S. Guthery and M. Cronin, “Mobile Application
Development with SMS and the SIM Toolkit”, McGraw Hill,
2002.

[15] Ng. YuLoon, “Short Message Service (SMS) Security
Solution for Mobile Devices”, Master’s Thesis, Naval
Postgraduate School, December 2006.

[16] The Official Bluetooth Technology Info Site, “How
Bluetooth Technology Works”,
http://www.bluetooth.com/Bluetooth/Learn/Works/, last
accessed 15 August 2007.

[17] D. Amit, “Wireless Home Networks — DECT, Bluetooth,
HomeRF, and Wireless LANs”, XILINX, White Paper, 21
March 2001.

[18] S. Keshav, “Why Cell Phones Will Dominate the Future
Internet”, ACM SIGCOMM, vol.35, no.2, April 2005.

[19] J. Wayne and R. Ayers, “Guidelines on Cell Phone
Forensics”, National Institute of Standards and
Technology, Special Publication, pp. 800-101, May 2007.

[20] R. Mossesgeld, “What exactly is a smartphone, and what
exactly is a PDA?”,
http://www.thesmartpda.com/50226711/what_exactly_is_a_s
martphone_and_what_exactly_is_a_pda.php, last accessed
16 August 2007.

[21] J. Waycott and A. Kukulska-Hulme, “Students’
Experiences With PDAs for Reading Course Materials”, 01
March 2002.

[22] M. Akbas and G. Singh, “Personal Information Search on
Mobile Devices”, September 2007, (to appear).

[23] Y.N. Singh, “Mobile Computing Networks”, EE/ACES, IIT
Kanpur, Seminar Slides, August 2005.

 85

[24] E. Signorini, “Notebook Computers Go Truly Mobile at
the Intersection of 3G and IT”, Yankee Group Consulting
Report, February 2007.

[25] V. Upkar and R. Vetter, “Emerging Wireless and Mobile
Networks”, Communications of The ACM, vol. 43, no. 6,
June 2000.

[26] G. Kioumourtzis, “Simulation and Evaluation of Routing
Protocols for Mobile Ad Hoc Networks (MANETs)”,
Master’s Thesis, Naval Postgraduate School, September
2005.

[27] Infrared Data Association (IrDA) Official Web Site,
“About IrDA”, http://irda.org/displaycommon.cfm?an=1
last accessed on 17 August 2007.

[28] C. Evers, N. Akalugwu, J. Bugnevicius, and F.
Pourtaran, “General Computer Science II Course Project:
Bluetooth and Infrared”, International University
Bremen, 11 April 2003.

[29] J. Brooks, “Are Devices Better Dead Than Infrared?”,
eWEEK, January 2001.

[30] S. Keshav, “Why Cell Phones Will Dominate the Future
Internet”, ACM SIGCOMM, Computer Communication Review,
vol. 35, no.2, April 2005.

[31] C. Bettstetter, H.J. Vogel, and J. Eberspeher, “GSM
Phase 2+ General Packet Radio Service GPRS:
Architecture, Protocols, and Air Interface”, IEEE
Communication Survey, 1999.

[32] B.T. Schilit, D.J. Hilbert, and T.K. Koh, “Web
Interaction Using Very Small Internet Devices”,
Computer; IEEE, pp. 37-45, October 2002.

[33] M.B. Jones, G. Buchanan, and H. Thimbleby, “Sorting out
Searching on Small Screen Devices”, Conference on
Mobile HCI, September 2002.

[34] K. Church, B. Smyth, P. Cotter, and K. Bradley, “Mobile
Information Access: A Study of Emerging Search Behavior
on the Mobile Internet”, ACM Transactions on the Web,
vol.1, no.1, article 4, May 2007.

 86

[35] R. Schusteritsch, S. Rao, and K. Rodden, “Mobile Search
with Text Messages: Designing the User Experience for
Google SMS”, pp. 1777-1780, CHI 2005.

[36] J.L. Leidner, “A Wireless Natural Language Search
Engine”, p. 677, ACM SIGIR 2005.

[37] Y. Raivio, “Peer-to-Peer Overlay Architecture for
Mobile Networks”, pp. 1-10, HIIT 2005.

[38] C. Lindemann and O.P. Waldhorst, “A Distributed Search
Service for Peer-to-Peer File Sharing in Mobile
Applications”, Proc 2nd Int’l Conf on Peer-to-Peer
Computing (P2P’02), 2002.

[39] K. Church, B. Smyth, and M.T. Keane, “Evaluating
Interfaces for Intelligent Mobile Search”, W4A at
WWW2006, 23-26 May 2006.

[40] S. Jones, M. Jones, and S. Deo, “Using Keyphrases as
Search Result Surrogates on Small Screen Devices”,
International Journal of Personal and Ubiquitous
Computing, 8(1):55–68, 2004.

[41] G. Singh, “Wireless Data Services”, Course Slides for
CS4137, Department of Computer Science, Naval
Postgraduate School, March 2007.

[42] G. Singh, (ed) “Content Repurposing”, IEEE Multimedia,
11(1), January-March 2004.

[43] Java Platform, Micro Edition,
http://java.sun.com/javame/index.jsp (accessed on 30
July 2007).

[44] Google Desktop, http://desktop.google.com/features.html
(accessed on 30 July 2007).

[45] Java Community Process Program, “JSR 75: PDA Optional
Packages for the J2METM Platform”,
http://www.jcp.org/en/jsr/detail?id=75 (accessed on 18
August 2007).

[46] Java GDS API v2, “The Apache Software Foundation”,
http://gdapi.sourceforge.net/, (accessed on 15 July
2007).

 87

[47] D. Johnson, “RSS and Atom in action”, 209 Bruce Park
Ave., Greenwich, CT 06830: Manning Publications Co.,
2006.

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

